Mercurial > repos > george-weingart > lefse
view home/ubuntu/lefse_to_export/plot_features.py @ 1:db64b6287cd6 draft
Modified datatypes
author | george-weingart |
---|---|
date | Wed, 20 Aug 2014 16:56:51 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import os,sys,matplotlib,zipfile,argparse,string matplotlib.use('Agg') from pylab import * from lefse import * import random as rand colors = ['r','g','b','m','c'] def read_params(args): parser = argparse.ArgumentParser(description='Cladoplot') parser.add_argument('input_file_1', metavar='INPUT_FILE', type=str, help="dataset files") parser.add_argument('input_file_2', metavar='INPUT_FILE', type=str, help="LEfSe output file") parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, help="the file for the output (the zip file if an archive is required, the output directory otherwise)") parser.add_argument('--width',dest="width", type=float, default=10.0 ) parser.add_argument('--height',dest="height", type=float, default=4.0) parser.add_argument('--top',dest="top", type=float, default=-1.0, help="set maximum y limit (-1.0 means automatic limit)") parser.add_argument('--bot',dest="bot", type=float, default=0.0, help="set minimum y limit (default 0.0, -1.0 means automatic limit)") parser.add_argument('--title_font_size',dest="title_font_size", type=str, default="14") parser.add_argument('--class_font_size',dest="class_font_size", type=str, default="14") parser.add_argument('--class_label_pos',dest="class_label_pos", type=str, choices=["up","down"], default="up") parser.add_argument('--subcl_mean',dest="subcl_mean", type=str, choices=["y","n"], default="y") parser.add_argument('--subcl_median',dest="subcl_median", type=str, choices=["y","n"], default="y") parser.add_argument('--font_size',dest="font_size", type=str, default="10") parser.add_argument('-n',dest="unused", metavar="flt", type=float, default=-1.0,help="unused") parser.add_argument('--format', dest="format", default="png", choices=["png","pdf","svg"], type=str, help="the format for the output file") parser.add_argument('-f', dest="f", default="diff", choices=["all","diff","one"], type=str, help="wheter to plot all features (all), only those differentially abundant according to LEfSe or only one (the one given with --feature_name) ") parser.add_argument('--feature_name', dest="feature_name", default="", type=str, help="The name of the feature to plot (levels separated by .) ") parser.add_argument('--feature_num', dest="feature_num", default="-1", type=int, help="The number of the feature to plot ") parser.add_argument('--archive', dest="archive", default="none", choices=["zip","none"], type=str, help="") parser.add_argument('--background_color',dest="back_color", type=str, choices=["k","w"], default="w", help="set the color of the background") parser.add_argument('--dpi',dest="dpi", type=int, default=72) args = parser.parse_args() return vars(args) def read_data(file_data,file_feats,params): with open(file_feats, 'r') as features: feats_to_plot = [(f.split()[:-1],len(f.split()) == 5) for f in features.readlines()] if not feats_to_plot: print "No features to plot\n" sys.exit(0) feats,cls,class_sl,subclass_sl,class_hierarchy,params['norm_v'] = load_data(file_data, True) if params['feature_num'] > 0: params['feature_name'] = [line.split()[0] for line in open(params['input_file_2'])][params['feature_num']-1] features = {} for f in feats_to_plot: if params['f'] == "diff" and not f[1]: continue if params['f'] == "one" and f[0][0] != params['feature_name']: continue features[f[0][0]] = {'dim':float(f[0][1]), 'abundances':feats[f[0][0]], 'sig':f[1], 'cls':cls, 'class_sl':class_sl, 'subclass_sl':subclass_sl, 'class_hierarchy':class_hierarchy} if not features: print "No features to plot\n" sys.exit(0) return features def plot(name,k_n,feat,params): fig = plt.figure(figsize=(params['width'], params['height']),edgecolor=params['fore_color'],facecolor=params['back_color']) ax = fig.add_subplot(111,axis_bgcolor=params['back_color']) subplots_adjust(bottom=0.15) max_m = 0.0 norm = 1.0 if float(params['norm_v']) < 0.0 else float(params['norm_v']) for v in feat['subclass_sl'].values(): fr,to = v[0], v[1] median = numpy.mean(feat['abundances'][fr:to]) if median > max_m: max_m = median max_m /= norm max_v = max_m*3 if max_m*3 < max(feat['abundances'])*1.1/norm else max(feat['abundances'])/norm min_v = max(0.0,min(feat['abundances'])*0.9/norm) if params['top'] > 0.0: max_v = params['top'] if params['bot'] >= 0.0: min_v = params['bot'] if max_v == 0.0: max_v = 0.0001 if max_v == min_v: max_v = min_v*1.1 cl_sep = max(int(sum([vv[1]/norm - vv[0]/norm for vv in feat['class_sl'].values()])/150.0),1) seps = [] xtics = [] x2tics = [] last_fr = 0.0 for i,cl in enumerate(sorted(feat['class_hierarchy'].keys())): for j,subcl in enumerate(feat['class_hierarchy'][cl]): fr = feat['subclass_sl'][subcl][0] to = feat['subclass_sl'][subcl][1] val = feat['abundances'][fr:to] fr += cl_sep*i to += cl_sep*i pos = arange(fr,to) max_x = to col = colors[j%len(colors)] vv = [v1/norm for v1 in val] median = numpy.median(vv) mean = numpy.mean(vv) valv = [max(min(v/norm,max_v),min_v) for v in val] ax.bar(pos,valv, align='center', color=col, edgecolor=col, linewidth=0.1 ) if params['subcl_median'] == 'y': ax.plot([fr,to-1],[median,median],"k--",linewidth=1,color=params['fore_color']) if params['subcl_mean'] == 'y': ax.plot([fr,to-1],[mean,mean],"-",linewidth=1,color=params['fore_color']) nna = subcl if subcl.count("_") == 0 or not subcl.startswith(cl) else "_".join(subcl.split(cl)[1:]) if nna == "subcl" or nna == "_subcl": nna = " " xtics.append(((fr+(to-fr)/2),nna)) seps.append(float(to)) x2tics.append(((last_fr+(to-last_fr)/2),cl)) last_fr = to + float(cl_sep) for s in seps[:-1]: ax.plot([s,s],[min_v,max_v],"-",linewidth=5,color=params['fore_color']) ax.set_title(k_n, size=params['title_font_size']) xticks([x[0] for x in xtics],[x[1] for x in xtics],rotation=-30, ha = 'left', fontsize=params['font_size'], color=params['fore_color']) yticks(fontsize=params['font_size']) ylabel('Relative abundance') ax.set_ylim((min_v,max_v)) a,b = ax.get_xlim() ax.set_xlim((0-float(last_fr)/float(b-a),max_x)) ax.yaxis.grid(True) def get_col_attr(x): return hasattr(x, 'set_color') and not hasattr(x, 'set_facecolor') def get_edgecol_attr(x): return hasattr(x, 'set_edgecolor') for o in fig.findobj(get_col_attr): o.set_color(params['fore_color']) for o in fig.findobj(get_edgecol_attr): if o.get_edgecolor() == params['back_color']: o.set_edgecolor(params['fore_color']) for t in x2tics: m = ax.get_ylim()[1]*0.97 if params['class_label_pos']=='up' else 0.07 plt.text(t[0],m, "class: "+t[1], ha ="center", size=params['class_font_size'], va="top", bbox = dict(boxstyle="round", ec='k', fc='y')) plt.savefig(name,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi']) plt.close() return name if __name__ == '__main__': params = read_params(sys.argv) params['fore_color'] = 'w' if params['back_color'] == 'k' else 'k' features = read_data(params['input_file_1'],params['input_file_2'],params) if params['archive'] == "zip": file = zipfile.ZipFile(params['output_file'], "w") for k,f in features.items(): print "Exporting ", k if params['archive'] == "zip": of = plot("/tmp/"+str(int(f['sig']))+"_"+"-".join(k.split("."))+"."+params['format'],k,f,params) file.write(of, os.path.basename(of), zipfile.ZIP_DEFLATED) else: if params['f'] == 'one': plot(params['output_file'],k,f,params) else: plot(params['output_file']+str(int(f['sig']))+"_"+"-".join(k.split("."))+"."+params['format'],k,f,params) if params['archive'] == "zip": file.close()