Mercurial > repos > george-weingart > maaslin
comparison src/Maaslin.R @ 8:e9677425c6c3 default tip
Updated the structure of the libraries
author | george.weingart@gmail.com |
---|---|
date | Mon, 09 Feb 2015 12:17:40 -0500 |
parents | e0b5980139d9 |
children |
comparison
equal
deleted
inserted
replaced
7:c72e14eabb08 | 8:e9677425c6c3 |
---|---|
1 #!/usr/bin/env Rscript | |
2 ##################################################################################### | |
3 #Copyright (C) <2012> | |
4 # | |
5 #Permission is hereby granted, free of charge, to any person obtaining a copy of | |
6 #this software and associated documentation files (the "Software"), to deal in the | |
7 #Software without restriction, including without limitation the rights to use, copy, | |
8 #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, | |
9 #and to permit persons to whom the Software is furnished to do so, subject to | |
10 #the following conditions: | |
11 # | |
12 #The above copyright notice and this permission notice shall be included in all copies | |
13 #or substantial portions of the Software. | |
14 # | |
15 #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | |
16 #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A | |
17 #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
18 #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
19 #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
20 #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
21 # | |
22 # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), | |
23 # authored by the Huttenhower lab at the Harvard School of Public Health | |
24 # (contact Timothy Tickle, ttickle@hsph.harvard.edu). | |
25 ##################################################################################### | |
26 | |
27 inlinedocs <- function( | |
28 ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu> | |
29 ##description<< Main driver script. Should be called to perform MaAsLin Analysis. | |
30 ) { return( pArgs ) } | |
31 | |
32 | |
33 ### Install packages if not already installed | |
34 vDepLibrary = c("agricolae", "gam", "gamlss", "gbm", "glmnet", "inlinedocs", "logging", "MASS", "nlme", "optparse", "outliers", "penalized", "pscl", "robustbase", "testthat") | |
35 for(sDepLibrary in vDepLibrary) | |
36 { | |
37 if(! require(sDepLibrary, character.only=TRUE) ) | |
38 { | |
39 install.packages(pkgs=sDepLibrary, repos="http://cran.us.r-project.org") | |
40 } | |
41 } | |
42 | |
43 ### Logging class | |
44 suppressMessages(library( logging, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE)) | |
45 ### Class for commandline argument processing | |
46 suppressMessages(library( optparse, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE)) | |
47 | |
48 | |
49 ### Create command line argument parser | |
50 pArgs <- OptionParser( usage = "%prog [options] <output.txt> <data.tsv>" ) | |
51 | |
52 # Input files for MaAsLin | |
53 ## Data configuration file | |
54 pArgs <- add_option( pArgs, c("-i", "--input_config"), type="character", action="store", dest="strInputConfig", metavar="data.read.config", help="Optional configuration file describing data input format.") | |
55 ## Data manipulation/normalization file | |
56 pArgs <- add_option( pArgs, c("-I", "--input_process"), type="character", action="store", dest="strInputR", metavar="data.R", help="Optional configuration script normalizing or processing data.") | |
57 | |
58 # Settings for MaAsLin | |
59 ## Maximum false discovery rate | |
60 pArgs <- add_option( pArgs, c("-d", "--fdr"), type="double", action="store", dest="dSignificanceLevel", default=0.25, metavar="significance", help="The threshold to use for significance for the generated q-values (BH FDR). Anything equal to or lower than this is significant. [Default %default]") | |
61 ## Minimum feature relative abundance filtering | |
62 pArgs <- add_option( pArgs, c("-r", "--minRelativeAbundance"), type="double", action="store", dest="dMinAbd", default=0.0001, metavar="minRelativeAbundance", help="The minimum relative abundance allowed in the data. Values below this are removed and imputed as the median of the sample data. [Default %default]") | |
63 ## Minimum feature prevalence filtering | |
64 pArgs <- add_option( pArgs, c("-p", "--minPrevalence"), type="double", action="store", dest="dMinSamp", default=0.1, metavar="minPrevalence", help="The minimum percentage of samples a feature can have abundance in before being removed. Also is the minimum percentage of samples a metadata can have that are not NA before being removed. [Default %default]") | |
65 ## Fence for outlier, if not set Grubbs test is used | |
66 pArgs <- add_option( pArgs, c("-o", "--outlierFence"), type="double", action="store", dest="dOutlierFence", default=0, metavar="outlierFence", help="Outliers are defined as this number times the interquartile range added/subtracted from the 3rd/1st quartiles respectively. If set to 0 (default), outliers are defined by the Grubbs test. [Default %default]") | |
67 ## Significance for Grubbs test | |
68 pArgs <- add_option(pArgs, c("-G","--grubbsSig"), type="double", action="store", dest="dPOutlier", default=0.05, metavar="grubbsAlpha", help="This is the significance cuttoff used to indicate an outlier or not. The closer to zero, the more significant an outlier must be to be removed. [Default %default]") | |
69 ## Fixed (not random) covariates | |
70 pArgs <- add_option( pArgs, c("-R","--random"), type="character", action="store", dest="strRandomCovariates", default=NULL, metavar="fixed", help="These metadata will be treated as random covariates. Comma delimited data feature names. These features must be listed in the read.config file. Example '-R RandomMetadata1,RandomMetadata2'. [Default %default]") | |
71 ## Change the type of correction fo rmultiple corrections | |
72 pArgs <- add_option( pArgs, c("-T","--testingCorrection"), type="character", action="store", dest="strMultTestCorrection", default="BH", metavar="multipleTestingCorrection", help="This indicates which multiple hypothesis testing method will be used, available are holm, hochberg, hommel, bonferroni, BH, BY. [Default %default]") | |
73 ## Use a zero inflated model of the inference method indicate in -m | |
74 pArgs <- add_option( pArgs, c("-z","--doZeroInfated"), type="logical", action="store_true", default = FALSE, dest="fZeroInflated", metavar="fZeroInflated", help="If true, the zero inflated version of the inference model indicated in -m is used. For instance if using lm, zero-inflated regression on a gaussian distribution is used. [Default %default].") | |
75 | |
76 # Arguments used in validation of MaAsLin | |
77 ## Model selection (enumerate) c("none","boost","penalized","forward","backward") | |
78 pArgs <- add_option( pArgs, c("-s", "--selection"), type="character", action="store", dest="strModelSelection", default="boost", metavar="model_selection", help="Indicates which of the variable selection techniques to use. [Default %default]") | |
79 ## Argument indicating which method should be ran (enumerate) c("univariate","lm","neg_binomial","quasi") | |
80 pArgs <- add_option( pArgs, c("-m", "--method"), type="character", action="store", dest="strMethod", default="lm", metavar="analysis_method", help="Indicates which of the statistical inference methods to run. [Default %default]") | |
81 ## Argument indicating which link function is used c("none","asinsqrt") | |
82 pArgs <- add_option( pArgs, c("-l", "--link"), type="character", action="store", dest="strTransform", default="asinsqrt", metavar="transform_method", help="Indicates which link or transformation to use with a glm, if glm is not selected this argument will be set to none. [Default %default]") | |
83 pArgs <- add_option( pArgs, c("-Q","--NoQC"), type="logical", action="store_true", default=FALSE, dest="fNoQC", metavar="Do_Not_Run_QC", help="Indicates if the quality control will be ran on the metadata/data. Default is true. [Default %default]") | |
84 | |
85 # Arguments to suppress MaAsLin actions on certain data | |
86 ## Do not perform model selection on the following data | |
87 pArgs <- add_option( pArgs, c("-F","--forced"), type="character", action="store", dest="strForcedPredictors", default=NULL, metavar="forced_predictors", help="Metadata features that will be forced into the model seperated by commas. These features must be listed in the read.config file. Example '-F Metadata2,Metadata6,Metadata10'. [Default %default]") | |
88 ## Do not impute the following | |
89 pArgs <- add_option( pArgs, c("-n","--noImpute"), type="character", action="store", dest="strNoImpute", default=NULL, metavar="no_impute", help="These data will not be imputed. Comma delimited data feature names. Example '-n Feature1,Feature4,Feature6'. [Default %default]") | |
90 | |
91 #Miscellaneouse arguments | |
92 ### Argument to control logging (enumerate) | |
93 strDefaultLogging = "DEBUG" | |
94 pArgs <- add_option( pArgs, c("-v", "--verbosity"), type="character", action="store", dest="strVerbosity", default=strDefaultLogging, metavar="verbosity", help="Logging verbosity [Default %default]") | |
95 ### Run maaslin without creating a log file | |
96 pArgs <- add_option( pArgs, c("-O","--omitLogFile"), type="logical", action="store_true", default=FALSE, dest="fOmitLogFile", metavar="omitlogfile",help="Including this flag will stop the creation of the output log file. [Default %default]") | |
97 ### Argument for inverting background to black | |
98 pArgs <- add_option( pArgs, c("-t", "--invert"), type="logical", action="store_true", dest="fInvert", default=FALSE, metavar="invert", help="When given, flag indicates to invert the background of figures to black. [Default %default]") | |
99 ### Selection Frequency | |
100 pArgs <- add_option( pArgs, c("-f","--selectionFrequency"), type="double", action="store", dest="dSelectionFrequency", default=NA, metavar="selectionFrequency", help="Selection Frequency for boosting (max 1 will remove almost everything). Interpreted as requiring boosting to select metadata 100% percent of the time (or less if given a number that is less). Value should be between 1 (100%) and 0 (0%), NA (default is determined by data size).") | |
101 ### All v All | |
102 pArgs <- add_option( pArgs, c("-a","--allvall"), type="logical", action="store_true", dest="fAllvAll", default=FALSE, metavar="compare_all", help="When given, the flag indicates that each fixed covariate that is not indicated as Forced is compared once at a time per data feature (bug). Made to be used with the -F option to specify one part of the model while allowing the other to cycle through a group of covariates. Does not affect Random covariates, which are always included when specified. [Default %default]") | |
103 pArgs <- add_option( pArgs, c("-N","--PlotNA"), type="logical", action="store_true", default=FALSE, dest="fPlotNA", metavar="plotNAs",help="Plot data that was originally NA, by default they are not plotted. [Default %default]") | |
104 ### Alternative methodology settings | |
105 pArgs <- add_option( pArgs, c("-A","--pAlpha"), type="double", action="store", dest="dPenalizedAlpha", default=0.95, metavar="PenalizedAlpha",help="The alpha for penalization (1.0=L1 regularization, LASSO; 0.0=L2 regularization, ridge regression. [Default %default]") | |
106 ### Pass an alternative library dir | |
107 pArgs <- add_option( pArgs, c("-L", "--libdir"), action="store", dest="sAlternativeLibraryLocation", default=file.path( "","usr","share","biobakery" ), metavar="AlternativeLibraryDirectory", help="An alternative location to find the lib directory. This dir and children will be searched for the first maaslin/src/lib dir.") | |
108 | |
109 ### Misc biplot arguments | |
110 pArgs <- add_option( pArgs, c("-M","--BiplotMetadataScale"), type="double", action="store", dest="dBiplotMetadataScale", default=1, metavar="scaleForMetadata", help="A real number used to scale the metadata labels on the biplot (otherwise a default will be selected from the data). [Default %default]") | |
111 pArgs <- add_option( pArgs, c("-C", "--BiplotColor"), type="character", action="store", dest="strBiplotColor", default=NULL, metavar="BiplotColorCovariate", help="A continuous metadata that will be used to color samples in the biplot ordination plot (otherwise a default will be selected from the data). Example Age [Default %default]") | |
112 pArgs <- add_option( pArgs, c("-S", "--BiplotShapeBy"), type="character", action="store", dest="strBiplotShapeBy", default=NULL, metavar="BiplotShapeCovariate", help="A discontinuous metadata that will be used to indicate shapes of samples in the Biplot ordination plot (otherwise a default will be selected from the data). Example Sex [Default %default]") | |
113 pArgs <- add_option( pArgs, c("-P", "--BiplotPlotFeatures"), type="character", action="store", dest="strBiplotPlotFeatures", default=NULL, metavar="BiplotFeaturesToPlot", help="Metadata and data features to plot (otherwise a default will be selected from the data). Comma Delimited.") | |
114 pArgs <- add_option( pArgs, c("-D", "--BiplotRotateMetadata"), type="character", action="store", dest="sRotateByMetadata", default=NULL, metavar="BiplotRotateMetadata", help="Metadata to use to rotate the biplot. Format 'Metadata,value'. 'Age,0.5' . [Default %default]") | |
115 pArgs <- add_option( pArgs, c("-B", "--BiplotShapes"), type="character", action="store", dest="sShapes", default=NULL, metavar="BiplotShapes", help="Specify shapes specifically for metadata or metadata values. [Default %default]") | |
116 pArgs <- add_option( pArgs, c("-b", "--BugCount"), type="integer", action="store", dest="iNumberBugs", default=3, metavar="PlottedBugCount", help="The number of bugs automatically selected from the data to plot. [Default %default]") | |
117 pArgs <- add_option( pArgs, c("-E", "--MetadataCount"), type="integer", action="store", dest="iNumberMetadata", default=NULL, metavar="PlottedMetadataCount", help="The number of metadata automatically selected from the data to plot. [Default all significant metadata and minimum is 1]") | |
118 | |
119 #pArgs <- add_option( pArgs, c("-c","--MFAFeatureCount"), type="integer", action="store", dest="iMFAMaxFeatures", default=3, metavar="maxMFAFeature", help="Number of features or number of bugs to plot (default=3; 3 metadata and 3 data).") | |
120 | |
121 main <- function( | |
122 ### The main function manages the following: | |
123 ### 1. Optparse arguments are checked | |
124 ### 2. A logger is created if requested in the optional arguments | |
125 ### 3. The custom R script is sourced. This is the input *.R script named | |
126 ### the same as the input *.pcl file. This script contains custom formating | |
127 ### of data and function calls to the MFA visualization. | |
128 ### 4. Matrices are written to the project folder as they are read in seperately as metadata and data and merged together. | |
129 ### 5. Data is cleaned with custom filtering if supplied in the *.R script. | |
130 ### 6. Transformations occur if indicated by the optional arguments | |
131 ### 7. Standard quality control is performed on data | |
132 ### 8. Cleaned metadata and data are written to output project for documentation. | |
133 ### 9. A regularization method is ran (boosting by default). | |
134 ### 10. An analysis method is performed on the model (optionally boosted model). | |
135 ### 11. Data is summarized and PDFs are created for significant associations | |
136 ### (those whose q-values {BH FDR correction} are <= the threshold given in the optional arguments. | |
137 pArgs | |
138 ### Parsed commandline arguments | |
139 ){ | |
140 lsArgs <- parse_args( pArgs, positional_arguments = TRUE ) | |
141 #logdebug("lsArgs", c_logrMaaslin) | |
142 #logdebug(paste(lsArgs,sep=" "), c_logrMaaslin) | |
143 | |
144 # Parse parameters | |
145 lsForcedParameters = NULL | |
146 if(!is.null(lsArgs$options$strForcedPredictors)) | |
147 { | |
148 lsForcedParameters = unlist(strsplit(lsArgs$options$strForcedPredictors,",")) | |
149 } | |
150 xNoImpute = NULL | |
151 if(!is.null(lsArgs$options$strNoImpute)) | |
152 { | |
153 xNoImpute = unlist(strsplit(lsArgs$options$strNoImpute,"[,]")) | |
154 } | |
155 lsRandomCovariates = NULL | |
156 if(!is.null(lsArgs$options$strRandomCovariates)) | |
157 { | |
158 lsRandomCovariates = unlist(strsplit(lsArgs$options$strRandomCovariates,"[,]")) | |
159 } | |
160 lsFeaturesToPlot = NULL | |
161 if(!is.null(lsArgs$options$strBiplotPlotFeatures)) | |
162 { | |
163 lsFeaturesToPlot = unlist(strsplit(lsArgs$options$strBiplotPlotFeatures,"[,]")) | |
164 } | |
165 | |
166 #If logging is not an allowable value, inform user and set to INFO | |
167 if(length(intersect(names(loglevels), c(lsArgs$options$strVerbosity))) == 0) | |
168 { | |
169 print(paste("Maaslin::Error. Did not understand the value given for logging, please use any of the following: DEBUG,INFO,WARN,ERROR.")) | |
170 print(paste("Maaslin::Warning. Setting logging value to \"",strDefaultLogging,"\".")) | |
171 } | |
172 | |
173 # Do not allow mixed effect models and zero inflated models, don't have implemented | |
174 if(lsArgs$options$fZeroInflated && !is.null(lsArgs$options$strRandomCovariates)) | |
175 { | |
176 stop("MaAsLin Error:: The combination of zero inflated models and mixed effects models are not supported.") | |
177 } | |
178 | |
179 ### Create logger | |
180 c_logrMaaslin <- getLogger( "maaslin" ) | |
181 addHandler( writeToConsole, c_logrMaaslin ) | |
182 setLevel( lsArgs$options$strVerbosity, c_logrMaaslin ) | |
183 | |
184 #Get positional arguments | |
185 if( length( lsArgs$args ) != 2 ) { stop( print_help( pArgs ) ) } | |
186 ### Output file name | |
187 strOutputTXT <- lsArgs$args[1] | |
188 ### Input TSV data file | |
189 strInputTSV <- lsArgs$args[2] | |
190 | |
191 # Get analysis method options | |
192 # includes data transformations, model selection/regularization, regression models/links | |
193 lsArgs$options$strModelSelection = tolower(lsArgs$options$strModelSelection) | |
194 if(!lsArgs$options$strModelSelection %in% c("none","boost","penalized","forward","backward")) | |
195 { | |
196 logerror(paste("Received an invalid value for the selection argument, received '",lsArgs$options$strModelSelection,"'"), c_logrMaaslin) | |
197 stop( print_help( pArgs ) ) | |
198 } | |
199 lsArgs$options$strMethod = tolower(lsArgs$options$strMethod) | |
200 if(!lsArgs$options$strMethod %in% c("univariate","lm","neg_binomial","quasi")) | |
201 { | |
202 logerror(paste("Received an invalid value for the method argument, received '",lsArgs$options$strMethod,"'"), c_logrMaaslin) | |
203 stop( print_help( pArgs ) ) | |
204 } | |
205 lsArgs$options$strTransform = tolower(lsArgs$options$strTransform) | |
206 if(!lsArgs$options$strTransform %in% c("none","asinsqrt")) | |
207 { | |
208 logerror(paste("Received an invalid value for the transform/link argument, received '",lsArgs$options$strTransform,"'"), c_logrMaaslin) | |
209 stop( print_help( pArgs ) ) | |
210 } | |
211 | |
212 if(!lsArgs$options$strMultTestCorrection %in% c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY")) | |
213 { | |
214 logerror(paste("Received an invalid value for the multiple testing correction argument, received '",lsArgs$options$strMultTestCorrection,"'"), c_logrMaaslin) | |
215 stop( print_help( pArgs ) ) | |
216 } | |
217 | |
218 ### Necessary local import files | |
219 ### Check to make sure the lib is in the expected place (where the script is) | |
220 ### if not, then try the alternative lib location | |
221 ### This will happen if, for instance the script is linked or | |
222 ### on the path. | |
223 # Get the first choice relative path | |
224 initial.options <- commandArgs(trailingOnly = FALSE) | |
225 script.name <- sub("--file=", "", initial.options[grep("--file=", initial.options)]) | |
226 strDir = file.path( dirname( script.name ), "lib" ) | |
227 # If this does not have the lib file then go for the alt lib | |
228 if( !file.exists(strDir) ) | |
229 { | |
230 lsPotentialListLocations = dir( path = lsArgs$options$sAlternativeLibraryLocation, pattern = "lib", recursive = TRUE, include.dirs = TRUE) | |
231 if( length( lsPotentialListLocations ) > 0 ) | |
232 { | |
233 sLibraryPath = file.path( "maaslin","src","lib" ) | |
234 iLibraryPathLength = nchar( sLibraryPath ) | |
235 for( strSearchDir in lsPotentialListLocations ) | |
236 { | |
237 # Looking for the path where the end of the path is equal to the library path given earlier | |
238 # Also checks before hand to make sure the path is atleast as long as the library path so no errors occur | |
239 if ( substring( strSearchDir, 1 + nchar( strSearchDir ) - iLibraryPathLength ) == sLibraryPath ) | |
240 { | |
241 strDir = file.path( lsArgs$options$sAlternativeLibraryLocation, strSearchDir ) | |
242 break | |
243 } | |
244 } | |
245 } | |
246 } | |
247 | |
248 strSelf = basename( script.name ) | |
249 for( strR in dir( strDir, pattern = "*.R$" ) ) | |
250 { | |
251 if( strR == strSelf ) {next} | |
252 source( file.path( strDir, strR ) ) | |
253 } | |
254 | |
255 # Get analysis modules | |
256 afuncVariableAnalysis = funcGetAnalysisMethods(lsArgs$options$strModelSelection,lsArgs$options$strTransform,lsArgs$options$strMethod,lsArgs$options$fZeroInflated) | |
257 | |
258 # Set up parameters for variable selection | |
259 lxParameters = list(dFreq=lsArgs$options$dSelectionFrequency, dPAlpha=lsArgs$options$dPenalizedAlpha) | |
260 if((lsArgs$options$strMethod == "lm")||(lsArgs$options$strMethod == "univariate")) | |
261 { lxParameters$sFamily = "gaussian" | |
262 } else if(lsArgs$options$strMethod == "neg_binomial"){ lxParameters$sFamily = "binomial" | |
263 } else if(lsArgs$options$strMethod == "quasi"){ lxParameters$sFamily = "poisson"} | |
264 | |
265 #Indicate start | |
266 logdebug("Start MaAsLin", c_logrMaaslin) | |
267 #Log commandline arguments | |
268 logdebug("Commandline Arguments", c_logrMaaslin) | |
269 logdebug(lsArgs, c_logrMaaslin) | |
270 | |
271 ### Output directory for the study based on the requested output file | |
272 outputDirectory = dirname(strOutputTXT) | |
273 ### Base name for the project based on the read.config name | |
274 strBase <- sub("\\.[^.]*$", "", basename(strInputTSV)) | |
275 | |
276 ### Sources in the custom script | |
277 ### If the custom script is not there then | |
278 ### defaults are used and no custom scripts are ran | |
279 funcSourceScript <- function(strFunctionPath) | |
280 { | |
281 #If is specified, set up the custom func clean variable | |
282 #If the custom script is null then return | |
283 if(is.null(strFunctionPath)){return(NULL)} | |
284 | |
285 #Check to make sure the file exists | |
286 if(file.exists(strFunctionPath)) | |
287 { | |
288 #Read in the file | |
289 source(strFunctionPath) | |
290 } else { | |
291 #Handle when the file does not exist | |
292 stop(paste("MaAsLin Error: A custom data manipulation script was indicated but was not found at the file path: ",strFunctionPath,sep="")) | |
293 } | |
294 } | |
295 | |
296 #Read file | |
297 inputFileData = funcReadMatrices(lsArgs$options$strInputConfig, strInputTSV, log=TRUE) | |
298 if(is.null(inputFileData[[c_strMatrixMetadata]])) { names(inputFileData)[1] <- c_strMatrixMetadata } | |
299 if(is.null(inputFileData[[c_strMatrixData]])) { names(inputFileData)[2] <- c_strMatrixData } | |
300 | |
301 #Metadata and bug names | |
302 lsOriginalMetadataNames = names(inputFileData[[c_strMatrixMetadata]]) | |
303 lsOriginalFeatureNames = names(inputFileData[[c_strMatrixData]]) | |
304 | |
305 #Dimensions of the datasets | |
306 liMetaData = dim(inputFileData[[c_strMatrixMetadata]]) | |
307 liData = dim(inputFileData[[c_strMatrixData]]) | |
308 | |
309 #Merge data files together | |
310 frmeData = merge(inputFileData[[c_strMatrixMetadata]],inputFileData[[c_strMatrixData]],by.x=0,by.y=0) | |
311 #Reset rownames | |
312 row.names(frmeData) = frmeData[[1]] | |
313 frmeData = frmeData[-1] | |
314 | |
315 #Write QC files only in certain modes of verbosity | |
316 # Read in and merge files | |
317 if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { | |
318 # If the QC internal file does not exist, make | |
319 strQCDir = file.path(outputDirectory,"QC") | |
320 dir.create(strQCDir, showWarnings = FALSE) | |
321 # Write metadata matrix before merge | |
322 funcWriteMatrices(dataFrameList=list(Metadata = inputFileData[[c_strMatrixMetadata]]), saveFileList=c(file.path(strQCDir,"metadata.tsv")), configureFileName=c(file.path(strQCDir,"metadata.read.config")), acharDelimiter="\t") | |
323 # Write data matrix before merge | |
324 funcWriteMatrices(dataFrameList=list(Data = inputFileData[[c_strMatrixData]]), saveFileList=c(file.path(strQCDir,"data.tsv")), configureFileName=c(file.path(strQCDir,"data.read.config")), acharDelimiter="\t") | |
325 #Record the data as it has been read | |
326 funcWriteMatrices(dataFrameList=list(Merged = frmeData), saveFileList=c(file.path(strQCDir,"read-Merged.tsv")), configureFileName=c(file.path(strQCDir,"read-Merged.read.config")), acharDelimiter="\t") | |
327 } | |
328 | |
329 #Data needed for the MaAsLin environment | |
330 #List of lists (one entry per file) | |
331 #Is contained by a container of itself | |
332 #lslsData = list() | |
333 #List | |
334 lsData = c() | |
335 | |
336 #List of metadata indicies | |
337 aiMetadata = c(1:liMetaData[2]) | |
338 lsData$aiMetadata = aiMetadata | |
339 #List of data indicies | |
340 aiData = c(1:liData[2])+liMetaData[2] | |
341 lsData$aiData = aiData | |
342 #Add a list to hold qc metrics and counts | |
343 lsData$lsQCCounts$aiDataInitial = aiData | |
344 lsData$lsQCCounts$aiMetadataInitial = aiMetadata | |
345 | |
346 #Raw data | |
347 lsData$frmeRaw = frmeData | |
348 | |
349 #Load script if it exists, stop on error | |
350 funcProcess <- NULL | |
351 if(!is.null(funcSourceScript(lsArgs$options$strInputR))){funcProcess <- get(c_strCustomProcessFunction)} | |
352 | |
353 #Clean the data and update the current data list to the cleaned data list | |
354 funcTransformData = afuncVariableAnalysis[[c_iTransform]] | |
355 lsQCCounts = list(aiDataCleaned = c(), aiMetadataCleaned = c()) | |
356 lsRet = list(frmeData=frmeData, aiData=aiData, aiMetadata=aiMetadata, lsQCCounts=lsQCCounts, liNaIndices=c()) | |
357 | |
358 viNotTransformedDataIndices = c() | |
359 if(!lsArgs$options$fNoQC) | |
360 { | |
361 c_logrMaaslin$info( "Running quality control." ) | |
362 lsRet = funcClean( frmeData=frmeData, funcDataProcess=funcProcess, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=lsData$lsQCCounts, astrNoImpute=xNoImpute, dMinSamp = lsArgs$options$dMinSamp, dMinAbd = lsArgs$options$dMinAbd, dFence=lsArgs$options$dOutlierFence, funcTransform=funcTransformData, dPOutlier=lsArgs$options$dPOutlier) | |
363 | |
364 viNotTransformedDataIndices = lsRet$viNotTransformedData | |
365 | |
366 #If using a count based model make sure all are integer (QCing can add in numeric values during interpolation for example) | |
367 if(lsArgs$options$strMethod %in% c_vCountBasedModels) | |
368 { | |
369 c_logrMaaslin$info( "Assuring the data matrix is integer." ) | |
370 for(iDataIndex in aiData) | |
371 { | |
372 lsRet$frmeData[ iDataIndex ] = round( lsRet$frmeData[ iDataIndex ] ) | |
373 } | |
374 } | |
375 } else { | |
376 c_logrMaaslin$info( "Not running quality control, attempting transform." ) | |
377 ### Need to do transform if the QC is not performed | |
378 iTransformed = 0 | |
379 for(iDataIndex in aiData) | |
380 { | |
381 if( ! funcTransformIncreasesOutliers( lsRet$frmeData[iDataIndex], funcTransformData ) ) | |
382 { | |
383 lsRet$frmeData[iDataIndex]=funcTransformData(lsRet$frmeData[iDataIndex]) | |
384 iTransformed = iTransformed + 1 | |
385 } else { | |
386 viNotTransformedDataIndices = c(viNotTransformedDataIndices, iDataIndex) | |
387 } | |
388 } | |
389 c_logrMaaslin$info(paste("Number of features transformed = ", iTransformed)) | |
390 } | |
391 | |
392 logdebug("lsRet", c_logrMaaslin) | |
393 logdebug(format(lsRet), c_logrMaaslin) | |
394 #Update the variables after cleaning | |
395 lsRet$frmeRaw = frmeData | |
396 lsRet$lsQCCounts$aiDataCleaned = lsRet$aiData | |
397 lsRet$lsQCCounts$aiMetadataCleaned = lsRet$aiMetadata | |
398 | |
399 #Add List of metadata string names | |
400 astrMetadata = colnames(lsRet$frmeData)[lsRet$aiMetadata] | |
401 lsRet$astrMetadata = astrMetadata | |
402 | |
403 # If plotting NA data reset the NA metadata indices to empty so they will not be excluded | |
404 if(lsArgs$options$fPlotNA) | |
405 { | |
406 lsRet$liNaIndices = list() | |
407 } | |
408 | |
409 #Write QC files only in certain modes of verbosity | |
410 if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { | |
411 #Record the data after cleaning | |
412 funcWriteMatrices(dataFrameList=list(Cleaned = lsRet$frmeData[union(lsRet$aiMetadata,lsRet$aiData)]), saveFileList=c(file.path(strQCDir,"read_cleaned.tsv")), configureFileName=c(file.path(strQCDir,"read_cleaned.read.config")), acharDelimiter="\t") } | |
413 | |
414 #These variables will be used to count how many features get analysed | |
415 lsRet$lsQCCounts$iBoosts = 0 | |
416 lsRet$lsQCCounts$iBoostErrors = 0 | |
417 lsRet$lsQCCounts$iNoTerms = 0 | |
418 lsRet$lsQCCounts$iLms = 0 | |
419 | |
420 #Indicate if the residuals plots should occur | |
421 fDoRPlot=TRUE | |
422 #Should not occur for univariates | |
423 if(lsArgs$options$strMethod %in% c("univariate")){ fDoRPlot=FALSE } | |
424 | |
425 #Run analysis | |
426 alsRetBugs = funcBugs( frmeData=lsRet$frmeData, lsData=lsRet, aiMetadata=lsRet$aiMetadata, aiData=lsRet$aiData, aiNotTransformedData=viNotTransformedDataIndices, strData=strBase, dSig=lsArgs$options$dSignificanceLevel, fInvert=lsArgs$options$fInvert, | |
427 strDirOut=outputDirectory, funcReg=afuncVariableAnalysis[[c_iSelection]], funcTransform=funcTransformData, funcUnTransform=afuncVariableAnalysis[[c_iUnTransform]], lsNonPenalizedPredictors=lsForcedParameters, | |
428 funcAnalysis=afuncVariableAnalysis[[c_iAnalysis]], lsRandomCovariates=lsRandomCovariates, funcGetResults=afuncVariableAnalysis[[c_iResults]], fDoRPlot=fDoRPlot, fOmitLogFile=lsArgs$options$fOmitLogFile, | |
429 fAllvAll=lsArgs$options$fAllvAll, liNaIndices=lsRet$liNaIndices, lxParameters=lxParameters, strTestingCorrection=lsArgs$options$strMultTestCorrection, | |
430 fIsUnivariate=afuncVariableAnalysis[[c_iIsUnivariate]], fZeroInflated=lsArgs$options$fZeroInflated ) | |
431 | |
432 #Write QC files only in certain modes of verbosity | |
433 if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { | |
434 funcWriteQCReport(strProcessFileName=file.path(strQCDir,"ProcessQC.txt"), lsQCData=alsRetBugs$lsQCCounts, liDataDim=liData, liMetadataDim=liMetaData) | |
435 | |
436 ### Write out the parameters used in the run | |
437 unlink(file.path(strQCDir,"Run_Parameters.txt")) | |
438 funcWrite("Parameters used in the MaAsLin run", file.path(strQCDir,"Run_Parameters.txt")) | |
439 funcWrite(paste("Optional input read.config file=",lsArgs$options$strInputConfig), file.path(strQCDir,"Run_Parameters.txt")) | |
440 funcWrite(paste("Optional R file=",lsArgs$options$strInputR), file.path(strQCDir,"Run_Parameters.txt")) | |
441 funcWrite(paste("FDR threshold for pdf generation=",lsArgs$options$dSignificanceLevel), file.path(strQCDir,"Run_Parameters.txt")) | |
442 funcWrite(paste("Minimum relative abundance=",lsArgs$options$dMinAbd), file.path(strQCDir,"Run_Parameters.txt")) | |
443 funcWrite(paste("Minimum percentage of samples with measurements=",lsArgs$options$dMinSamp), file.path(strQCDir,"Run_Parameters.txt")) | |
444 funcWrite(paste("The fence used to define outliers with a quantile based analysis. If set to 0, the Grubbs test was used=",lsArgs$options$dOutlierFence), file.path(strQCDir,"Run_Parameters.txt")) | |
445 funcWrite(paste("Ignore if the Grubbs test was not used. The significance level used as a cut-off to define outliers=",lsArgs$options$dPOutlier), file.path(strQCDir,"Run_Parameters.txt")) | |
446 funcWrite(paste("These covariates are treated as random covariates and not fixed covariates=",lsArgs$options$strRandomCovariates), file.path(strQCDir,"Run_Parameters.txt")) | |
447 funcWrite(paste("The type of multiple testing correction used=",lsArgs$options$strMultTestCorrection), file.path(strQCDir,"Run_Parameters.txt")) | |
448 funcWrite(paste("Zero inflated inference models were turned on=",lsArgs$options$fZeroInflated), file.path(strQCDir,"Run_Parameters.txt")) | |
449 funcWrite(paste("Feature selection step=",lsArgs$options$strModelSelection), file.path(strQCDir,"Run_Parameters.txt")) | |
450 funcWrite(paste("Statistical inference step=",lsArgs$options$strMethod), file.path(strQCDir,"Run_Parameters.txt")) | |
451 funcWrite(paste("Numeric transform used=",lsArgs$options$strTransform), file.path(strQCDir,"Run_Parameters.txt")) | |
452 funcWrite(paste("Quality control was run=",!lsArgs$options$fNoQC), file.path(strQCDir,"Run_Parameters.txt")) | |
453 funcWrite(paste("These covariates were forced into each model=",lsArgs$options$strForcedPredictors), file.path(strQCDir,"Run_Parameters.txt")) | |
454 funcWrite(paste("These features' data were not changed by QC processes=",lsArgs$options$strNoImpute), file.path(strQCDir,"Run_Parameters.txt")) | |
455 funcWrite(paste("Output verbosity=",lsArgs$options$strVerbosity), file.path(strQCDir,"Run_Parameters.txt")) | |
456 funcWrite(paste("Log file was generated=",!lsArgs$options$fOmitLogFile), file.path(strQCDir,"Run_Parameters.txt")) | |
457 funcWrite(paste("Data plots were inverted=",lsArgs$options$fInvert), file.path(strQCDir,"Run_Parameters.txt")) | |
458 funcWrite(paste("Ignore unless boosting was used. The threshold for the rel.inf used to select features=",lsArgs$options$dSelectionFrequency), file.path(strQCDir,"Run_Parameters.txt")) | |
459 funcWrite(paste("All verses all inference method was used=",lsArgs$options$fAllvAll), file.path(strQCDir,"Run_Parameters.txt")) | |
460 funcWrite(paste("Ignore unless penalized feature selection was used. Alpha to determine the type of penalty=",lsArgs$options$dPenalizedAlpha), file.path(strQCDir,"Run_Parameters.txt")) | |
461 funcWrite(paste("Biplot parameter, user defined metadata scale=",lsArgs$options$dBiplotMetadataScale), file.path(strQCDir,"Run_Parameters.txt")) | |
462 funcWrite(paste("Biplot parameter, user defined metadata used to color the plot=",lsArgs$options$strBiplotColor), file.path(strQCDir,"Run_Parameters.txt")) | |
463 funcWrite(paste("Biplot parameter, user defined metadata used to dictate the shapes of the plot markers=",lsArgs$options$strBiplotShapeBy), file.path(strQCDir,"Run_Parameters.txt")) | |
464 funcWrite(paste("Biplot parameter, user defined user requested features to plot=",lsArgs$options$strBiplotPlotFeatures), file.path(strQCDir,"Run_Parameters.txt")) | |
465 funcWrite(paste("Biplot parameter, user defined metadata used to rotate the plot ordination=",lsArgs$options$sRotateByMetadata), file.path(strQCDir,"Run_Parameters.txt")) | |
466 funcWrite(paste("Biplot parameter, user defined custom shapes for metadata=",lsArgs$options$sShapes), file.path(strQCDir,"Run_Parameters.txt")) | |
467 funcWrite(paste("Biplot parameter, user defined number of bugs to plot =",lsArgs$options$iNumberBugs), file.path(strQCDir,"Run_Parameters.txt")) | |
468 } | |
469 | |
470 ### Write summary table | |
471 # Summarize output files based on a keyword and a significance threshold | |
472 # Look for less than or equal to the threshold (appropriate for p-value and q-value type measurements) | |
473 # DfSummary is sorted by the q.value when it is returned | |
474 dfSummary = funcSummarizeDirectory(astrOutputDirectory=outputDirectory, | |
475 strBaseName=strBase, | |
476 astrSummaryFileName=file.path(outputDirectory,paste(strBase,c_sSummaryFileSuffix, sep="")), | |
477 astrKeyword=c_strKeywordEvaluatedForInclusion, | |
478 afSignificanceLevel=lsArgs$options$dSignificanceLevel) | |
479 | |
480 if( !is.null( dfSummary ) ) | |
481 { | |
482 ### Start biplot | |
483 # Get metadata of interest and reduce to default size | |
484 lsSigMetadata = unique(dfSummary[[1]]) | |
485 if( is.null( lsArgs$options$iNumberMetadata ) ) | |
486 { | |
487 lsSigMetadata = lsSigMetadata[ 1:length( lsSigMetadata ) ] | |
488 } else { | |
489 lsSigMetadata = lsSigMetadata[ 1:min( length( lsSigMetadata ), max( lsArgs$options$iNumberMetadata, 1 ) ) ] | |
490 } | |
491 | |
492 # Convert to indices (ordered numerically here) | |
493 liSigMetadata = which( colnames( lsRet$frmeData ) %in% lsSigMetadata ) | |
494 | |
495 # Get bugs of interest and reduce to default size | |
496 lsSigBugs = unique(dfSummary[[2]]) | |
497 | |
498 # Reduce the bugs to the right size | |
499 if(lsArgs$options$iNumberBugs < 1) | |
500 { | |
501 lsSigBugs = c() | |
502 } else if( is.null( lsArgs$options$iNumberBugs ) ) { | |
503 lsSigBugs = lsSigBugs[ 1 : length( lsSigBugs ) ] | |
504 } else { | |
505 lsSigBugs = lsSigBugs[ 1 : lsArgs$options$iNumberBugs ] | |
506 } | |
507 | |
508 # Set color by and shape by features if not given | |
509 # Selects the continuous (for color) and factor (for shape) data with the most significant association | |
510 if(is.null(lsArgs$options$strBiplotColor)||is.null(lsArgs$options$strBiplotShapeBy)) | |
511 { | |
512 for(sMetadata in lsSigMetadata) | |
513 { | |
514 if(is.factor(lsRet$frmeRaw[[sMetadata]])) | |
515 { | |
516 if(is.null(lsArgs$options$strBiplotShapeBy)) | |
517 { | |
518 lsArgs$options$strBiplotShapeBy = sMetadata | |
519 if(!is.null(lsArgs$options$strBiplotColor)) | |
520 { | |
521 break | |
522 } | |
523 } | |
524 } | |
525 if(is.numeric(lsRet$frmeRaw[[sMetadata]])) | |
526 { | |
527 if(is.null(lsArgs$options$strBiplotColor)) | |
528 { | |
529 lsArgs$options$strBiplotColor = sMetadata | |
530 if(!is.null(lsArgs$options$strBiplotShapeBy)) | |
531 { | |
532 break | |
533 } | |
534 } | |
535 } | |
536 } | |
537 } | |
538 | |
539 #If a user defines a feature, make sure it is in the bugs/data indices | |
540 if(!is.null(lsFeaturesToPlot) || !is.null(lsArgs$options$strBiplotColor) || !is.null(lsArgs$options$strBiplotShapeBy)) | |
541 { | |
542 lsCombinedFeaturesToPlot = unique(c(lsFeaturesToPlot,lsArgs$options$strBiplotColor,lsArgs$options$strBiplotShapeBy)) | |
543 lsCombinedFeaturesToPlot = lsCombinedFeaturesToPlot[!is.null(lsCombinedFeaturesToPlot)] | |
544 | |
545 # If bugs to plot were given then do not use the significant bugs from the MaAsLin output which is default | |
546 if(!is.null(lsFeaturesToPlot)) | |
547 { | |
548 lsSigBugs = c() | |
549 liSigMetadata = c() | |
550 } | |
551 liSigMetadata = unique(c(liSigMetadata,which(colnames(lsRet$frmeData) %in% setdiff(lsCombinedFeaturesToPlot, lsOriginalFeatureNames)))) | |
552 lsSigBugs = unique(c(lsSigBugs, intersect(lsCombinedFeaturesToPlot, lsOriginalFeatureNames))) | |
553 } | |
554 | |
555 # Convert bug names and metadata names to comma delimited strings | |
556 vsBugs = paste(lsSigBugs,sep=",",collapse=",") | |
557 vsMetadata = paste(colnames(lsRet$frmeData)[liSigMetadata],sep=",",collapse=",") | |
558 vsMetadataByLevel = c() | |
559 | |
560 # Possibly remove the NA levels depending on the preferences | |
561 vsRemoveNA = c(NA, "NA", "na", "Na", "nA") | |
562 if(!lsArgs$options$fPlotNA){ vsRemoveNA = c() } | |
563 for(aiMetadataIndex in liSigMetadata) | |
564 { | |
565 lxCurMetadata = lsRet$frmeData[[aiMetadataIndex]] | |
566 sCurName = names(lsRet$frmeData[aiMetadataIndex]) | |
567 if(is.factor(lxCurMetadata)) | |
568 { | |
569 vsMetadataByLevel = c(vsMetadataByLevel,paste(sCurName, setdiff( levels(lxCurMetadata), vsRemoveNA),sep="_")) | |
570 } else { | |
571 vsMetadataByLevel = c(vsMetadataByLevel,sCurName) | |
572 } | |
573 } | |
574 | |
575 # If NAs should not be plotted, make them the background color | |
576 # Unless explicitly asked to be plotted | |
577 sPlotNAColor = "white" | |
578 if(lsArgs$options$fInvert){sPlotNAColor = "black"} | |
579 if(lsArgs$options$fPlotNA){sPlotNAColor = "grey"} | |
580 sLastMetadata = lsOriginalMetadataNames[max(which(lsOriginalMetadataNames %in% names(lsRet$frmeData)))] | |
581 | |
582 # Plot biplot | |
583 logdebug("PlotBiplot:Started") | |
584 funcDoBiplot( | |
585 sBugs = vsBugs, | |
586 sMetadata = vsMetadataByLevel, | |
587 sColorBy = lsArgs$options$strBiplotColor, | |
588 sPlotNAColor = sPlotNAColor, | |
589 sShapeBy = lsArgs$options$strBiplotShapeBy, | |
590 sShapes = lsArgs$options$sShapes, | |
591 sDefaultMarker = "16", | |
592 sRotateByMetadata = lsArgs$options$sRotateByMetadata, | |
593 dResizeArrow = lsArgs$options$dBiplotMetadataScale, | |
594 sInputFileName = lsRet$frmeRaw, | |
595 sLastMetadata = sLastMetadata, | |
596 sOutputFileName = file.path(outputDirectory,paste(strBase,"-biplot.pdf",sep=""))) | |
597 logdebug("PlotBiplot:Stopped") | |
598 } | |
599 } | |
600 | |
601 # This is the equivalent of __name__ == "__main__" in Python. | |
602 # That is, if it's true we're being called as a command line script; | |
603 # if it's false, we're being sourced or otherwise included, such as for | |
604 # library or inlinedocs. | |
605 if( identical( environment( ), globalenv( ) ) && | |
606 !length( grep( "^source\\(", sys.calls( ) ) ) ) { | |
607 main( pArgs ) } |