Mercurial > repos > george-weingart > maaslin
comparison src/lib/Utility.R @ 8:e9677425c6c3 default tip
Updated the structure of the libraries
author | george.weingart@gmail.com |
---|---|
date | Mon, 09 Feb 2015 12:17:40 -0500 |
parents | e0b5980139d9 |
children |
comparison
equal
deleted
inserted
replaced
7:c72e14eabb08 | 8:e9677425c6c3 |
---|---|
1 ##################################################################################### | |
2 #Copyright (C) <2012> | |
3 # | |
4 #Permission is hereby granted, free of charge, to any person obtaining a copy of | |
5 #this software and associated documentation files (the "Software"), to deal in the | |
6 #Software without restriction, including without limitation the rights to use, copy, | |
7 #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, | |
8 #and to permit persons to whom the Software is furnished to do so, subject to | |
9 #the following conditions: | |
10 # | |
11 #The above copyright notice and this permission notice shall be included in all copies | |
12 #or substantial portions of the Software. | |
13 # | |
14 #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | |
15 #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A | |
16 #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
17 #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
18 #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
19 #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
20 # | |
21 # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), | |
22 # authored by the Huttenhower lab at the Harvard School of Public Health | |
23 # (contact Timothy Tickle, ttickle@hsph.harvard.edu). | |
24 ##################################################################################### | |
25 | |
26 inlinedocs <- function( | |
27 ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu> | |
28 ##description<< Collection of minor utility scripts | |
29 ) { return( pArgs ) } | |
30 | |
31 #source("Constants.R") | |
32 | |
33 funcRename <- function( | |
34 ### Modifies labels for plotting | |
35 ### If the name is not an otu collapse to the last two clades | |
36 ### Otherwise use the most terminal clade | |
37 astrNames | |
38 ### Names to modify for plotting | |
39 ){ | |
40 astrRet <- c() | |
41 for( strName in astrNames ) | |
42 { | |
43 astrName <- strsplit( strName, c_cFeatureDelimRex )[[1]] | |
44 i <- length( astrName ) | |
45 if( ( astrName[i] == c_strUnclassified ) || !is.na( as.numeric( astrName[i] ) ) ) | |
46 { | |
47 strRet <- paste( astrName[( i - 1 ):i], collapse = c_cFeatureDelim ) | |
48 } else { | |
49 strRet <- astrName[i] | |
50 } | |
51 astrRet <- c(astrRet, strRet) | |
52 } | |
53 return( astrRet ) | |
54 ### List of modified names | |
55 } | |
56 | |
57 funcBonferonniCorrectFactorData <- function | |
58 ### Bonferroni correct for factor data | |
59 (dPvalue, | |
60 ### P-value to correct | |
61 vsFactors, | |
62 ### Factors of the data to correct | |
63 fIgnoreNAs = TRUE | |
64 ){ | |
65 vsUniqueFactors = unique( vsFactors ) | |
66 if( fIgnoreNAs ){ vsUniqueFactors = setdiff( vsUniqueFactors, c("NA","na","Na","nA") ) } | |
67 return( dPvalue * max( 1, ( length( vsUniqueFactors ) - 1 ) ) ) | |
68 ### Numeric p-value that is correct for levels (excluding NA levels) | |
69 } | |
70 | |
71 funcCalculateTestCounts <- function( | |
72 ### Calculates the number of tests used in inference | |
73 iDataCount, | |
74 asMetadata, | |
75 asForced, | |
76 asRandom, | |
77 fAllvAll | |
78 ){ | |
79 iMetadata = length(asMetadata) | |
80 iForced = length(setdiff(intersect( asForced, asMetadata ), asRandom)) | |
81 iRandom = length(intersect( asRandom, asMetadata )) | |
82 if(fAllvAll) | |
83 { | |
84 #AllvAll flow formula | |
85 return((iMetadata-iForced-iRandom) * iDataCount) | |
86 } | |
87 | |
88 #Normal flow formula | |
89 return((iMetadata-iRandom) * iDataCount) | |
90 } | |
91 | |
92 funcGetRandomColors=function( | |
93 #Generates a given number of random colors | |
94 tempNumberColors = 1 | |
95 ### Number of colors to generate | |
96 ){ | |
97 adRet = c() | |
98 return(sapply(1:tempNumberColors, function(x){ | |
99 adRGB <- ( runif( 3 ) * 0.66 ) + 0.33 | |
100 adRet <- c(adRet, rgb( adRGB[1], adRGB[2], adRGB[3] )) | |
101 })) | |
102 } | |
103 | |
104 funcCoef2Col <- function( | |
105 ### Searches through a dataframe and looks for a column that would match the coefficient | |
106 ### by the name of the column or the column name and level appended together. | |
107 strCoef, | |
108 ### String coefficient name | |
109 frmeData, | |
110 ### Data frame of data | |
111 astrCols = c() | |
112 ### Column names of interest (if NULL is given, all column names are inspected). | |
113 ){ | |
114 #If the coefficient is the intercept there is no data column to return so return null | |
115 if( strCoef %in% c("(Intercept)", "Intercept") ) { return( NULL ) } | |
116 #Remove ` from coefficient | |
117 strCoef <- gsub( "`", "", strCoef ) | |
118 | |
119 #If the coefficient name is not in the data frame | |
120 if( !( strCoef %in% colnames( frmeData ) ) ) | |
121 { | |
122 fHit <- FALSE | |
123 #If the column names are not provided, use the column names of the dataframe. | |
124 if( is.null( astrCols ) ){astrCols <- colnames( frmeData )} | |
125 | |
126 #Search through the different column names (factors) | |
127 for( strFactor in astrCols ) | |
128 { | |
129 #Select a column, if it is not a factor or does not begin with the factor's name then skip | |
130 adCur <- frmeData[,strFactor] | |
131 if( ( class( adCur ) != "factor" ) || | |
132 ( substr( strCoef, 1, nchar( strFactor ) ) != strFactor ) ) { next } | |
133 | |
134 #For the factors, create factor-level name combinations to read in factors | |
135 #Then check to see the factor-level combination is the coefficient of interest | |
136 #If it is then store that factor as the coefficient of interest | |
137 #And break | |
138 for( strValue in levels( adCur ) ) | |
139 { | |
140 strCur <- paste( strFactor, strValue, sep = c_sFactorNameSep ) | |
141 if( strCur == strCoef ) | |
142 { | |
143 strCoef <- strFactor | |
144 fHit <- TRUE | |
145 break | |
146 } | |
147 } | |
148 | |
149 #If the factor was found, return | |
150 if( fHit ){break } | |
151 } | |
152 } | |
153 | |
154 #If the original coefficient or the coefficient factor combination name are in the | |
155 #data frame, return the name. Otherwise return NA. | |
156 return( ifelse( ( strCoef %in% colnames( frmeData ) ), strCoef, NA ) ) | |
157 ### Coefficient name | |
158 } | |
159 | |
160 funcColToMFAValue = function( | |
161 ### Given a column name, return the MFA values that could be associated with the name | |
162 lsColNames, | |
163 ### String list of column names (as you would get from names(dataframe)) | |
164 dfData | |
165 ### Data frame of data the column names refer to | |
166 ){ | |
167 lsMFAValues = c() | |
168 | |
169 for(sColName in lsColNames) | |
170 { | |
171 axCur = dfData[[sColName]] | |
172 | |
173 if(is.logical(axCur)){axCur=as.factor(axCur)} | |
174 if(is.factor(axCur)) | |
175 { | |
176 lsLevels = levels(axCur) | |
177 if((length(lsLevels)==2) && (!is.na(as.numeric(lsLevels[1]))) && (!is.na(as.numeric(lsLevels[2])))) | |
178 { | |
179 lsMFAValues = c(lsMFAValues,paste(sColName,lsLevels[1],sep=c_sMFANameSep1),paste(sColName,lsLevels[2],sep=c_sMFANameSep1)) | |
180 }else{ | |
181 for(sLevel in levels(axCur)) | |
182 { | |
183 lsMFAValues = c(lsMFAValues,sLevel) | |
184 } | |
185 } | |
186 } else { | |
187 lsMFAValues = c(lsMFAValues,sColName) | |
188 } | |
189 } | |
190 return(setdiff(lsMFAValues,c("NA",NA))) | |
191 } | |
192 | |
193 funcMFAValue2Col = function( | |
194 ### Given a value in a column, the column name is returned. | |
195 xValue, | |
196 dfData, | |
197 aiColumnIndicesToSearch = NULL | |
198 ){ | |
199 lsColumnNames = names(dfData) | |
200 | |
201 if(is.null(aiColumnIndicesToSearch)) | |
202 { | |
203 aiColumnIndicesToSearch = c(1:dim(dfData)[2]) | |
204 } | |
205 | |
206 # Could be the column name | |
207 if(xValue %in% lsColumnNames){return(xValue)} | |
208 | |
209 # Could be the column name and value | |
210 iValueLength = length(xValue) | |
211 for( iColIndex in c(1:length(lsColumnNames) )) | |
212 { | |
213 adCur = dfData[[lsColumnNames[iColIndex]]] | |
214 if(is.factor(adCur)) | |
215 { | |
216 for(strValue in levels(adCur)) | |
217 { | |
218 strCurVersion1 <- paste( lsColumnNames[iColIndex], strValue, sep = c_sMFANameSep1 ) | |
219 strCurVersion2 <- paste( lsColumnNames[iColIndex], strValue, sep = c_sMFANameSep2 ) | |
220 if((xValue == strCurVersion1) || (xValue == strCurVersion2)){return(lsColumnNames[iColIndex])} | |
221 } | |
222 } | |
223 } | |
224 | |
225 # Could be the value | |
226 for(iColIndex in aiColumnIndicesToSearch) | |
227 { | |
228 if(xValue %in% dfData[[lsColumnNames[iColIndex]]]){return(lsColumnNames[iColIndex])} | |
229 } | |
230 return(NULL) | |
231 } | |
232 | |
233 funcColorHelper <- function( | |
234 ### Makes sure the max is max and the min is min, and dmed is average | |
235 dMax = 1, | |
236 ### Max number | |
237 dMin = -1, | |
238 ### Min number | |
239 dMed = NA | |
240 ### Average value | |
241 ){ | |
242 #Make sure max is max and min is min | |
243 vSort = sort(c(dMin,dMax)) | |
244 return( list( dMin = vSort[1], dMax = vSort[2], dMed = ifelse((is.na(dMed)), (dMin+dMax)/2.0, dMed ) )) | |
245 ### List of min, max and med numbers | |
246 } | |
247 | |
248 funcColor <- function( | |
249 ### Generate a color based on a number that is forced to be between a min and max range. | |
250 ### The color is based on how far the number is from the center of the given range | |
251 ### From red to green (high) are produced with default settings | |
252 dX, | |
253 ### Number from which to generate the color | |
254 dMax = 1, | |
255 ### Max possible value | |
256 dMin = -1, | |
257 ### Min possible value | |
258 dMed = NA, | |
259 ### Central value if you don't want to be the average | |
260 adMax = c(1, 1, 0), | |
261 ### Is used to generate the color for the higher values in the range, this can be changed to give different colors set to green | |
262 adMin = c(0, 0, 1), | |
263 ### Is used to generate the color for the lower values in the range, this can be changed to give different colors set to red | |
264 adMed = c(0, 0, 0) | |
265 ### Is used to generate the color for the central values in the range, this can be changed to give different colors set to black | |
266 ){ | |
267 lsTmp <- funcColorHelper( dMax, dMin, dMed ) | |
268 dMax <- lsTmp$dMax | |
269 dMin <- lsTmp$dMin | |
270 dMed <- lsTmp$dMed | |
271 if( is.na( dX ) ) | |
272 { | |
273 dX <- dMed | |
274 } | |
275 if( dX > dMax ) | |
276 { | |
277 dX <- dMax | |
278 } else if( dX < dMin ) | |
279 { | |
280 dX <- dMin } | |
281 if( dX < dMed ) | |
282 { | |
283 d <- ( dMed - dX ) / ( dMed - dMin ) | |
284 adCur <- ( adMed * ( 1 - d ) ) + ( adMin * d ) | |
285 } else { | |
286 d <- ( dMax - dX ) / ( dMax - dMed ) | |
287 adCur <- ( adMed * d ) + ( adMax * ( 1 - d ) ) | |
288 } | |
289 return( rgb( adCur[1], adCur[2], adCur[3] ) ) | |
290 ### RGB object | |
291 } | |
292 | |
293 funcColors <- function( | |
294 ### Generate a range of colors | |
295 dMax = 1, | |
296 ### Max possible value | |
297 dMin = -1, | |
298 ### Min possible value | |
299 dMed = NA, | |
300 ### Central value if you don't want to be the average | |
301 adMax = c(1, 1, 0), | |
302 ### Is used to generate the color for the higher values in the range, this can be changed to give different colors set to green | |
303 adMin = c(0, 0, 1), | |
304 ### Is used to generate the color for the lower values in the range, this can be changed to give different colors set to red | |
305 adMed = c(0, 0, 0), | |
306 ### Is used to generate the color for the central values in the range, this can be changed to give different colors set to black | |
307 iSteps = 64 | |
308 ### Number of intermediary colors made in the range of colors | |
309 ){ | |
310 lsTmp <- funcColorHelper( dMax, dMin, dMed ) | |
311 dMax <- lsTmp$dMax | |
312 dMin <- lsTmp$dMin | |
313 dMed <- lsTmp$dMed | |
314 aRet <- c () | |
315 for( dCur in seq( dMin, dMax, ( dMax - dMin ) / ( iSteps - 1 ) ) ) | |
316 { | |
317 aRet <- c(aRet, funcColor( dCur, dMax, dMin, dMed, adMax, adMin, adMed )) | |
318 } | |
319 return( aRet ) | |
320 ### List of colors | |
321 } | |
322 | |
323 funcGetColor <- function( | |
324 ### Get a color based on col parameter | |
325 ) { | |
326 adCol <- col2rgb( par( "col" ) ) | |
327 return( sprintf( "#%02X%02X%02X", adCol[1], adCol[2], adCol[3] ) ) | |
328 ### Return hexadecimal color | |
329 } | |
330 | |
331 funcTrim=function( | |
332 ### Remove whitespace at the beginning or the end of a string | |
333 tempString | |
334 ### tempString String to be trimmed. | |
335 ){ | |
336 return(gsub("^\\s+|\\s+$","",tempString)) | |
337 } | |
338 | |
339 funcWrite <- function( | |
340 ### Write a string or a table of data | |
341 ### This transposes a table before it is written | |
342 pOut, | |
343 ### String or table to write | |
344 strFile | |
345 ### File to which to write | |
346 ){ | |
347 if(!is.na(strFile)) | |
348 { | |
349 if( length( intersect( class( pOut ), c("character", "numeric") ) ) ) | |
350 { | |
351 write.table( t(pOut), strFile, quote = FALSE, sep = c_cTableDelimiter, col.names = FALSE, row.names = FALSE, na = "", append = TRUE ) | |
352 } else { | |
353 capture.output( print( pOut ), file = strFile, append = TRUE ) | |
354 } | |
355 } | |
356 } | |
357 | |
358 funcWriteTable <- function( | |
359 ### Log a table to a file | |
360 frmeTable, | |
361 ### Table to write | |
362 strFile, | |
363 ### File to which to write | |
364 fAppend = FALSE | |
365 ### Append when writing | |
366 ){ | |
367 if(!is.na(strFile)) | |
368 { | |
369 write.table( frmeTable, strFile, quote = FALSE, sep = c_cTableDelimiter, na = "", col.names = NA, append = fAppend ) | |
370 } | |
371 } | |
372 | |
373 funcWriteQCReport <- function( | |
374 ### Write out the quality control report | |
375 strProcessFileName, | |
376 ### File name | |
377 lsQCData, | |
378 ### List of QC data generated by maaslin to be written | |
379 liDataDim, | |
380 ### Dimensions of the data matrix | |
381 liMetadataDim | |
382 ### Dimensions of the metadata matrix | |
383 ){ | |
384 unlink(strProcessFileName) | |
385 funcWrite( paste("Initial Metadata Matrix Size: Rows ",liMetadataDim[1]," Columns ",liMetadataDim[2],sep=""), strProcessFileName ) | |
386 funcWrite( paste("Initial Data Matrix Size: Rows ",liDataDim[1]," Columns ",liDataDim[2],sep=""), strProcessFileName ) | |
387 funcWrite( paste("\nInitial Data Count: ",length(lsQCData$aiDataInitial),sep=""), strProcessFileName ) | |
388 funcWrite( paste("Initial Metadata Count: ",length(lsQCData$aiMetadataInitial),sep=""), strProcessFileName ) | |
389 funcWrite( paste("Data Count after preprocess: ",length(lsQCData$aiAfterPreprocess),sep=""), strProcessFileName ) | |
390 funcWrite( paste("Removed for missing metadata: ",length(lsQCData$iMissingMetadata),sep=""), strProcessFileName ) | |
391 funcWrite( paste("Removed for missing data: ",length(lsQCData$iMissingData),sep=""), strProcessFileName ) | |
392 funcWrite( paste("Number of data with outliers: ",length(which(lsQCData$aiDataSumOutlierPerDatum>0)),sep=""), strProcessFileName ) | |
393 funcWrite( paste("Number of metadata with outliers: ",length(which(lsQCData$aiMetadataSumOutlierPerDatum>0)),sep=""), strProcessFileName ) | |
394 funcWrite( paste("Metadata count which survived clean: ",length(lsQCData$aiMetadataCleaned),sep=""), strProcessFileName ) | |
395 funcWrite( paste("Data count which survived clean: ",length(lsQCData$aiDataCleaned),sep=""), strProcessFileName ) | |
396 funcWrite( paste("\nBoostings: ",lsQCData$iBoosts,sep=""), strProcessFileName ) | |
397 funcWrite( paste("Boosting Errors: ",lsQCData$iBoostErrors,sep=""), strProcessFileName ) | |
398 funcWrite( paste("LMs with no terms suriving boosting: ",lsQCData$iNoTerms,sep=""), strProcessFileName ) | |
399 funcWrite( paste("LMs performed: ",lsQCData$iLms,sep=""), strProcessFileName ) | |
400 if(!is.null(lsQCData$lsQCCustom)) | |
401 { | |
402 funcWrite("Custom preprocess QC data: ", strProcessFileName ) | |
403 funcWrite(lsQCData$lsQCCustom, strProcessFileName ) | |
404 } else { | |
405 funcWrite("No custom preprocess QC data.", strProcessFileName ) | |
406 } | |
407 funcWrite( "\n#Details###########################", strProcessFileName ) | |
408 funcWrite("\nInitial Data Count: ", strProcessFileName ) | |
409 funcWrite(lsQCData$aiDataInitial, strProcessFileName ) | |
410 funcWrite("\nInitial Metadata Count: ", strProcessFileName ) | |
411 funcWrite(lsQCData$aiMetadataInitial, strProcessFileName ) | |
412 funcWrite("\nData Count after preprocess: ", strProcessFileName ) | |
413 funcWrite(lsQCData$aiAfterPreprocess, strProcessFileName ) | |
414 funcWrite("\nRemoved for missing metadata: ", strProcessFileName ) | |
415 funcWrite(lsQCData$iMissingMetadata, strProcessFileName ) | |
416 funcWrite("\nRemoved for missing data: ", strProcessFileName ) | |
417 funcWrite(lsQCData$iMissingData, strProcessFileName ) | |
418 funcWrite("\nDetailed outlier indices: ", strProcessFileName ) | |
419 for(sFeature in names(lsQCData$liOutliers)) | |
420 { | |
421 funcWrite(paste("Feature",sFeature,"Outlier indice(s):", paste(lsQCData$liOutliers[[sFeature]],collapse=",")), strProcessFileName ) | |
422 } | |
423 funcWrite("\nMetadata which survived clean: ", strProcessFileName ) | |
424 funcWrite(lsQCData$aiMetadataCleaned, strProcessFileName ) | |
425 funcWrite("\nData which survived clean: ", strProcessFileName ) | |
426 funcWrite(lsQCData$aiDataCleaned, strProcessFileName ) | |
427 } | |
428 | |
429 funcLMToNoNAFormula <-function( | |
430 lMod, | |
431 frmeTmp, | |
432 adCur | |
433 ){ | |
434 dfCoef = coef(lMod) | |
435 astrCoefNames = setdiff(names(dfCoef[as.vector(!is.na(dfCoef))==TRUE]),"(Intercept)") | |
436 astrPredictors = unique(as.vector(sapply(astrCoefNames,funcCoef2Col, frmeData=frmeTmp))) | |
437 strFormula = paste( "adCur ~", paste( sprintf( "`%s`", astrPredictors ), collapse = " + " ), sep = " " ) | |
438 return(try( lm(as.formula( strFormula ), data=frmeTmp ))) | |
439 } | |
440 | |
441 funcFormulaStrToList <- function( | |
442 #Takes a lm or mixed model formula and returns a list of covariate names in the formula | |
443 strFormula | |
444 #Formula to extract covariates from | |
445 ){ | |
446 #Return list | |
447 lsRetComparisons = c() | |
448 | |
449 #If you get a null or na just return | |
450 if(is.null(strFormula)||is.na(strFormula)){return(lsRetComparisons)} | |
451 | |
452 #Get test comparisons (predictor names from formula string) | |
453 asComparisons = gsub("`","",setdiff(unlist(strsplit(unlist(strsplit(strFormula,"~"))[2]," ")),c("","+"))) | |
454 | |
455 #Change metadata in formula to univariate comparisons | |
456 for(sComparison in asComparisons) | |
457 { | |
458 #Removed random covariate formating | |
459 lsParse = unlist(strsplit(sComparison, "[\\(\\|\\)]", perl=FALSE)) | |
460 lsRetComparisons = c(lsRetComparisons,lsParse[length(lsParse)]) | |
461 } | |
462 return(lsRetComparisons) | |
463 } | |
464 | |
465 funcFormulaListToString <- function( | |
466 # Using covariate and random covariate names, creates a lm or mixed model formula | |
467 # returns a vector of c(strLM, strMixedModel), one will be NA given the existance of random covariates. | |
468 # On error c(NA,NA) is given | |
469 astrTerms, | |
470 #Fixed covariates or all covariates if using an lm | |
471 astrRandomCovariates = NULL | |
472 #Random covariates for a mixed model | |
473 ){ | |
474 strRetLMFormula = NA | |
475 strRetMMFormula = NA | |
476 | |
477 #If no covariates return NA | |
478 if(is.null(astrTerms)){return(c(strRetLMFormula, strRetMMFormula))} | |
479 | |
480 #Get fixed covariates | |
481 astrFixedCovariates = setdiff(astrTerms,astrRandomCovariates) | |
482 | |
483 #If no fixed coavariates return NA | |
484 # Can not run a model with no fixed covariate, restriction of lmm | |
485 if(length(astrFixedCovariates)==0){return(c(strRetLMFormula, strRetMMFormula))} | |
486 | |
487 # Fixed Covariates | |
488 strFixedCovariates = paste( sprintf( "`%s`", astrFixedCovariates ), collapse = " + " ) | |
489 | |
490 #If random covariates, set up a formula for mixed models | |
491 if(length(astrRandomCovariates)>0) | |
492 { | |
493 #Format for lmer | |
494 #strRetFormula <- paste( "adCur ~ ", paste( sprintf( "(1|`%s`))", intersect(astrRandomCovariates, astrTerms)), collapse = " + " )) | |
495 #Format for glmmpql | |
496 strRandomCovariates = paste( sprintf( "1|`%s`", setdiff(astrRandomCovariates, astrTerms)), collapse = " + " ) | |
497 strRetMMFormula <- paste( "adCur ~ ", strFixedCovariates, " + ", strRandomCovariates, sep="") | |
498 } else { | |
499 #This is either the formula for all covariates in an lm or fixed covariates in the lmm | |
500 strRetLMFormula <- paste( "adCur ~ ", strFixedCovariates, sep="") | |
501 } | |
502 return(c(strRetLMFormula, strRetMMFormula)) | |
503 } |