comparison src/lib/BoostGLM.R @ 8:e9677425c6c3 default tip

Updated the structure of the libraries
author george.weingart@gmail.com
date Mon, 09 Feb 2015 12:17:40 -0500
parents e0b5980139d9
children
comparison
equal deleted inserted replaced
7:c72e14eabb08 8:e9677425c6c3
1 #####################################################################################
2 #Copyright (C) <2012>
3 #
4 #Permission is hereby granted, free of charge, to any person obtaining a copy of
5 #this software and associated documentation files (the "Software"), to deal in the
6 #Software without restriction, including without limitation the rights to use, copy,
7 #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
8 #and to permit persons to whom the Software is furnished to do so, subject to
9 #the following conditions:
10 #
11 #The above copyright notice and this permission notice shall be included in all copies
12 #or substantial portions of the Software.
13 #
14 #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
15 #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
16 #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
17 #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
18 #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
19 #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20 #
21 # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models),
22 # authored by the Huttenhower lab at the Harvard School of Public Health
23 # (contact Timothy Tickle, ttickle@hsph.harvard.edu).
24 #####################################################################################
25
26 inlinedocs <- function(
27 ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu>
28 ##description<< Manages the quality control of data and the performance of analysis (univariate or multivariate), regularization, and data (response) transformation.
29 ) { return( pArgs ) }
30
31 ### Load libraries quietly
32 suppressMessages(library( gam, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
33 suppressMessages(library( gbm, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
34 suppressMessages(library( logging, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
35 suppressMessages(library( outliers, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
36 suppressMessages(library( robustbase, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
37 suppressMessages(library( pscl, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE))
38
39 ### Get constants
40 #source(file.path("input","maaslin","src","Constants.R"))
41 #source("Constants.R")
42
43 ## Get logger
44 c_logrMaaslin <- getLogger( "maaslin" )
45
46 funcDoGrubbs <- function(
47 ### Use the Grubbs Test to identify outliers
48 iData,
49 ### Column index in the data frame to test
50 frmeData,
51 ### The data frame holding the data
52 dPOutlier,
53 ### P-value threshold to indicate an outlier is significant
54 lsQC
55 ### List holding the QC info of the cleaning step. Which indices are outliers is added.
56 ){
57 adData <- frmeData[,iData]
58
59 # Original number of NA
60 viNAOrig = which(is.na(adData))
61
62 while( TRUE )
63 {
64 lsTest <- try( grubbs.test( adData ), silent = TRUE )
65 if( ( class( lsTest ) == "try-error" ) || is.na( lsTest$p.value ) || ( lsTest$p.value > dPOutlier ) )
66 {break}
67 viOutliers = outlier( adData, logical = TRUE )
68 adData[viOutliers] <- NA
69 }
70
71 # Record removed data
72 viNAAfter = which(is.na(adData))
73
74 # If all were set to NA then ignore the filtering
75 if(length(adData)==length(viNAAfter))
76 {
77 viNAAfter = viNAOrig
78 adData = frmeData[,iData]
79 c_logrMaaslin$info( paste("Grubbs Test:: Identifed all data as outliers so was inactived for index=",iData," data=",paste(as.vector(frmeData[,iData]),collapse=","), "number zeros=", length(which(frmeData[,iData]==0)), sep = " " ))
80 } else if(mean(adData, na.rm=TRUE) == 0) {
81 viNAAfter = viNAOrig
82 adData = frmeData[,iData]
83 c_logrMaaslin$info( paste("Grubbs Test::Removed all values but 0, ignored. Index=",iData,".",sep=" " ) )
84 } else {
85 # Document removal
86 if( sum( is.na( adData ) ) )
87 {
88 c_logrMaaslin$info( "Grubbs Test::Removing %d outliers from %s", sum( is.na( adData ) ), colnames(frmeData)[iData] )
89 c_logrMaaslin$info( format( rownames( frmeData )[is.na( adData )] ))
90 }
91 }
92
93 return(list(data=adData,outliers=length(viNAAfter)-length(viNAOrig),indices=setdiff(viNAAfter,viNAOrig)))
94 }
95
96 funcDoFenceTest <- function(
97 ### Use a threshold based on the quartiles of the data to identify outliers
98 iData,
99 ### Column index in the data frame to test
100 frmeData,
101 ### The data frame holding the data
102 dFence
103 ### The fence outside the first and third quartiles to use as a threshold for cutt off.
104 ### This many times the interquartile range +/- to the 3rd/1st quartiles
105 ){
106 # Establish fence
107 adData <- frmeData[,iData]
108 adQ <- quantile( adData, c(0.25, 0.5, 0.75), na.rm = TRUE )
109
110 dIQR <- adQ[3] - adQ[1]
111 if(!dIQR)
112 {
113 dIQR = sd(adData,na.rm = TRUE)
114 }
115 dUF <- adQ[3] + ( dFence * dIQR )
116 dLF <- adQ[1] - ( dFence * dIQR )
117
118 # Record indices of values outside of fence to remove and remove.
119 aiRemove <- c()
120 for( j in 1:length( adData ) )
121 {
122 d <- adData[j]
123 if( !is.na( d ) && ( ( d < dLF ) || ( d > dUF ) ) )
124 {
125 aiRemove <- c(aiRemove, j)
126 }
127 }
128
129 if(length(aiRemove)==length(adData))
130 {
131 aiRemove = c()
132 c_logrMaaslin$info( "OutliersByFence:: Identified all data as outlier so was inactivated for index=", iData,"data=", paste(as.vector(frmeData[,iData]),collapse=","), "number zeros=", length(which(frmeData[,iData]==0)), sep=" " )
133 } else {
134 adData[aiRemove] <- NA
135
136 # Document to screen
137 if( length( aiRemove ) )
138 {
139 c_logrMaaslin$info( "OutliersByFence::Removing %d outliers from %s", length( aiRemove ), colnames(frmeData)[iData] )
140 c_logrMaaslin$info( format( rownames( frmeData )[aiRemove] ))
141 }
142 }
143
144 return(list(data=adData,outliers=length(aiRemove),indices=aiRemove))
145 }
146
147 funcZerosAreUneven = function(
148 ###
149 vdRawData,
150 ### Raw data to be checked during transformation
151 funcTransform,
152 ### Data transform to perform
153 vsStratificationFeatures,
154 ### Groupings to check for unevenness
155 dfData
156 ### Data frame holding the features
157 ){
158 # Return indicator of unevenness
159 fUneven = FALSE
160
161 # Transform the data to compare
162 vdTransformed = funcTransform( vdRawData )
163
164 # Go through each stratification of data
165 for( sStratification in vsStratificationFeatures )
166 {
167 # Current stratification
168 vFactorStrats = dfData[[ sStratification ]]
169
170 # If the metadata is not a factor then skip
171 # Only binned data can be evaluated this way.
172 if( !is.factor( vFactorStrats )){ next }
173
174 viZerosCountsRaw = c()
175 for( sLevel in levels( vFactorStrats ) )
176 {
177 vdTest = vdRawData[ which( vFactorStrats == sLevel ) ]
178 viZerosCountsRaw = c( viZerosCountsRaw, length(which(vdTest == 0)))
179 vdTest = vdTransformed[ which( vFactorStrats == sLevel ) ]
180 }
181 dExpectation = 1 / length( viZerosCountsRaw )
182 dMin = dExpectation / 2
183 dMax = dExpectation + dMin
184 viZerosCountsRaw = viZerosCountsRaw / sum( viZerosCountsRaw )
185 if( ( length( which( viZerosCountsRaw <= dMin ) ) > 0 ) || ( length( which( viZerosCountsRaw >= dMax ) ) > 0 ) )
186 {
187 return( TRUE )
188 }
189 }
190 return( fUneven )
191 }
192
193 funcTransformIncreasesOutliers = function(
194 ### Checks if a data transform increases outliers in a distribution
195 vdRawData,
196 ### Raw data to check for outlier zeros
197 funcTransform
198 ){
199 iUnOutliers = length( boxplot( vdRawData, plot = FALSE )$out )
200 iTransformedOutliers = length( boxplot( funcTransform( vdRawData ), plot = FALSE )$out )
201
202 return( iUnOutliers <= iTransformedOutliers )
203 }
204
205 funcClean <- function(
206 ### Properly clean / get data ready for analysis
207 ### Includes custom analysis from the custom R script if it exists
208 frmeData,
209 ### Data frame, input data to be acted on
210 funcDataProcess,
211 ### Custom script that can be given to perform specialized processing before MaAsLin does.
212 aiMetadata,
213 ### Indices of columns in frmeData which are metadata for analysis.
214 aiData,
215 ### Indices of column in frmeData which are (abundance) data for analysis.
216 lsQCCounts,
217 ### List that will hold the quality control information which is written in the output directory.
218 astrNoImpute = c(),
219 ### An array of column names of frmeData not to impute.
220 dMinSamp,
221 ### Minimum number of samples
222 dMinAbd,
223 # Minimum sample abundance
224 dFence,
225 ### How many quartile ranges defines the fence to define outliers.
226 funcTransform,
227 ### The data transformation function or a dummy function that does not affect the data
228 dPOutlier = 0.05
229 ### The significance threshold for the grubbs test to identify an outlier.
230 ){
231 # Call the custom script and set current data and indicies to the processes data and indicies.
232 c_logrMaaslin$debug( "Start Clean")
233 if( !is.null( funcDataProcess ) )
234 {
235 c_logrMaaslin$debug("Additional preprocess function attempted.")
236
237 pTmp <- funcDataProcess( frmeData=frmeData, aiMetadata=aiMetadata, aiData=aiData)
238 frmeData = pTmp$frmeData
239 aiMetadata = pTmp$aiMetadata
240 aiData = pTmp$aiData
241 lsQCCounts$lsQCCustom = pTmp$lsQCCounts
242 }
243 # Set data indicies after custom QC process.
244 lsQCCounts$aiAfterPreprocess = aiData
245
246 # Remove missing data, remove any sample that has less than dMinSamp * the number of data or low abundance
247 aiRemove = c()
248 aiRemoveLowAbundance = c()
249 for( iCol in aiData )
250 {
251 adCol = frmeData[,iCol]
252 adCol[!is.finite( adCol )] <- NA
253 if( ( sum( !is.na( adCol ) ) < ( dMinSamp * length( adCol ) ) ) ||
254 ( length( unique( na.omit( adCol ) ) ) < 2 ) )
255 {
256 aiRemove = c(aiRemove, iCol)
257 }
258 if( sum(adCol > dMinAbd, na.rm=TRUE ) < (dMinSamp * length( adCol)))
259 {
260 aiRemoveLowAbundance = c(aiRemoveLowAbundance, iCol)
261 }
262 }
263 # Remove and document
264 aiData = setdiff( aiData, aiRemove )
265 aiData = setdiff( aiData, aiRemoveLowAbundance )
266 lsQCCounts$iMissingData = aiRemove
267 lsQCCounts$iLowAbundanceData = aiRemoveLowAbundance
268 if(length(aiRemove))
269 {
270 c_logrMaaslin$info( "Removing the following for data lower bound.")
271 c_logrMaaslin$info( format( colnames( frmeData )[aiRemove] ))
272 }
273 if(length(aiRemoveLowAbundance))
274 {
275 c_logrMaaslin$info( "Removing the following for too many low abundance bugs.")
276 c_logrMaaslin$info( format( colnames( frmeData )[aiRemoveLowAbundance] ))
277 }
278
279 #Transform data
280 iTransformed = 0
281 viNotTransformedData = c()
282 for(aiDatum in aiData)
283 {
284 adValues = frmeData[,aiDatum]
285 # if( ! funcTransformIncreasesOutliers( adValues, funcTransform ) )
286 # {
287 frmeData[,aiDatum] = funcTransform( adValues )
288 # iTransformed = iTransformed + 1
289 # } else {
290 # viNotTransformedData = c( viNotTransformedData, aiDatum )
291 # }
292 }
293 c_logrMaaslin$info(paste("Number of features transformed = ",iTransformed))
294
295 # Metadata: Properly factorize all logical data and integer and number data with less than iNonFactorLevelThreshold
296 # Also record which are numeric metadata
297 aiNumericMetadata = c()
298 for( i in aiMetadata )
299 {
300 if( ( class( frmeData[,i] ) %in% c("integer", "numeric", "logical") ) &&
301 ( length( unique( frmeData[,i] ) ) < c_iNonFactorLevelThreshold ) ) {
302 c_logrMaaslin$debug(paste("Changing metadatum from numeric/integer/logical to factor",colnames(frmeData)[i],sep="="))
303 frmeData[,i] = factor( frmeData[,i] )
304 }
305 if( class( frmeData[,i] ) %in% c("integer","numeric") )
306 {
307 aiNumericMetadata = c(aiNumericMetadata,i)
308 }
309 }
310
311 # Remove outliers
312 # If the dFence Value is set use the method of defining the outllier as
313 # dFence * the interquartile range + or - the 3rd and first quartile respectively.
314 # If not the gibbs test is used.
315 lsQCCounts$aiDataSumOutlierPerDatum = c()
316 lsQCCounts$aiMetadataSumOutlierPerDatum = c()
317 lsQCCounts$liOutliers = list()
318
319 if( dFence > 0.0 )
320 {
321 # For data
322 for( iData in aiData )
323 {
324 lOutlierInfo <- funcDoFenceTest(iData=iData,frmeData=frmeData,dFence=dFence)
325 frmeData[,iData] <- lOutlierInfo[["data"]]
326 lsQCCounts$aiDataSumOutlierPerDatum <- c(lsQCCounts$aiDataSumOutlierPerDatum,lOutlierInfo[["outliers"]])
327 if(lOutlierInfo[["outliers"]]>0)
328 {
329 lsQCCounts$liOutliers[[paste(iData,sep="")]] <- lOutlierInfo[["indices"]]
330 }
331 }
332
333 # Remove outlier non-factor metadata
334 for( iMetadata in aiNumericMetadata )
335 {
336 lOutlierInfo <- funcDoFenceTest(iData=iMetadata,frmeData=frmeData,dFence=dFence)
337 frmeData[,iMetadata] <- lOutlierInfo[["data"]]
338 lsQCCounts$aiMetadataSumOutlierPerDatum <- c(lsQCCounts$aiMetadataSumOutlierPerDatum,lOutlierInfo[["outliers"]])
339 if(lOutlierInfo[["outliers"]]>0)
340 {
341 lsQCCounts$liOutliers[[paste(iMetadata,sep="")]] <- lOutlierInfo[["indices"]]
342 }
343 }
344 #Do not use the fence, use the Grubbs test
345 } else if(dPOutlier!=0.0){
346 # For data
347 for( iData in aiData )
348 {
349 lOutlierInfo <- funcDoGrubbs(iData=iData,frmeData=frmeData,dPOutlier=dPOutlier)
350 frmeData[,iData] <- lOutlierInfo[["data"]]
351 lsQCCounts$aiDataSumOutlierPerDatum <- c(lsQCCounts$aiDataSumOutlierPerDatum,lOutlierInfo[["outliers"]])
352 if(lOutlierInfo[["outliers"]]>0)
353 {
354 lsQCCounts$liOutliers[[paste(iData,sep="")]] <- lOutlierInfo[["indices"]]
355 }
356 }
357 for( iMetadata in aiNumericMetadata )
358 {
359 lOutlierInfo <- funcDoGrubbs(iData=iMetadata,frmeData=frmeData,dPOutlier=dPOutlier)
360 frmeData[,iMetadata] <- lOutlierInfo[["data"]]
361 lsQCCounts$aiMetadataSumOutlierPerDatum <- c(lsQCCounts$aiMetadataSumOutlierPerDatum,lOutlierInfo[["outliers"]])
362 if(lOutlierInfo[["outliers"]]>0)
363 {
364 lsQCCounts$liOutliers[[paste(iMetadata,sep="")]] <- lOutlierInfo[["indices"]]
365 }
366 }
367 }
368
369 # Metadata: Remove missing data
370 # This is defined as if there is only one non-NA value or
371 # if the number of NOT NA data is less than a percentage of the data defined by dMinSamp
372 aiRemove = c()
373 for( iCol in c(aiMetadata) )
374 {
375 adCol = frmeData[,iCol]
376 if( ( sum( !is.na( adCol ) ) < ( dMinSamp * length( adCol ) ) ) ||
377 ( length( unique( na.omit( adCol ) ) ) < 2 ) )
378 {
379 aiRemove = c(aiRemove, iCol)
380 }
381 }
382
383 # Remove metadata
384 aiMetadata = setdiff( aiMetadata, aiRemove )
385
386 # Update the data which was removed.
387 lsQCCounts$iMissingMetadata = aiRemove
388 if(length(aiRemove))
389 {
390 c_logrMaaslin$info("Removing the following metadata for too much missing data or only one data value outside of NA.")
391 c_logrMaaslin$info(format(colnames( frmeData )[aiRemove]))
392 }
393
394 # Keep track of factor levels in a list for later use
395 lslsFactors <- list()
396 for( iCol in c(aiMetadata) )
397 {
398 aCol <- frmeData[,iCol]
399 if( class( aCol ) == "factor" )
400 {
401 lslsFactors[[length( lslsFactors ) + 1]] <- list(iCol, levels( aCol ))
402 }
403 }
404
405 # Replace missing data values by the mean of the data column.
406 # Remove samples that were all NA from the cleaning and so could not be imputed.
407 aiRemoveData = c()
408 for( iCol in aiData )
409 {
410 adCol <- frmeData[,iCol]
411 adCol[is.infinite( adCol )] <- NA
412 adCol[is.na( adCol )] <- mean( adCol[which(adCol>0)], na.rm = TRUE )
413 frmeData[,iCol] <- adCol
414
415 if(length(which(is.na(frmeData[,iCol]))) == length(frmeData[,iCol]))
416 {
417 c_logrMaaslin$info( paste("Removing data", iCol, "for being all NA after QC"))
418 aiRemoveData = c(aiRemoveData,iCol)
419 }
420 }
421
422 # Remove and document
423 aiData = setdiff( aiData, aiRemoveData )
424 lsQCCounts$iMissingData = c(lsQCCounts$iMissingData,aiRemoveData)
425 if(length(aiRemoveData))
426 {
427 c_logrMaaslin$info( "Removing the following for having only NAs after cleaning (maybe due to only having NA after outlier testing).")
428 c_logrMaaslin$info( format( colnames( frmeData )[aiRemoveData] ))
429 }
430
431 #Use na.gam.replace to manage NA metadata
432 aiTmp <- setdiff( aiMetadata, which( colnames( frmeData ) %in% astrNoImpute ) )
433 # Keep tack of NAs so the may not be plotted later.
434 liNaIndices = list()
435 lsNames = names(frmeData)
436 for( i in aiTmp)
437 {
438 liNaIndices[[lsNames[i]]] = which(is.na(frmeData[,i]))
439 }
440 frmeData[,aiTmp] <- na.gam.replace( frmeData[,aiTmp] )
441
442 #If NA is a value in factor data, set the NA as a level.
443 for( lsFactor in lslsFactors )
444 {
445 iCol <- lsFactor[[1]]
446 aCol <- frmeData[,iCol]
447 if( "NA" %in% levels( aCol ) )
448 {
449 if(! lsNames[iCol] %in% astrNoImpute)
450 {
451 liNaIndices[[lsNames[iCol]]] = union(which(is.na(frmeData[,iCol])),which(frmeData[,iCol]=="NA"))
452 }
453 frmeData[,iCol] <- factor( aCol, levels = c(lsFactor[[2]], "NA") )
454 }
455 }
456
457 # Make sure there is a minimum number of non-0 measurements
458 aiRemove = c()
459 for( iCol in aiData )
460 {
461 adCol = frmeData[,iCol]
462 if(length( which(adCol!=0)) < ( dMinSamp * length( adCol ) ) )
463 {
464 aiRemove = c(aiRemove, iCol)
465 }
466 }
467
468 # Remove and document
469 aiData = setdiff( aiData, aiRemove)
470 lsQCCounts$iZeroDominantData = aiRemove
471 if(length(aiRemove))
472 {
473 c_logrMaaslin$info( "Removing the following for having not enough non-zero measurments for analysis.")
474 c_logrMaaslin$info( format( colnames( frmeData )[aiRemove] ))
475 }
476
477 c_logrMaaslin$debug("End FuncClean")
478 return( list(frmeData = frmeData, aiMetadata = aiMetadata, aiData = aiData, lsQCCounts = lsQCCounts, liNaIndices=liNaIndices, viNotTransformedData = viNotTransformedData) )
479 ### Return list of
480 ### frmeData: The Data after cleaning
481 ### aiMetadata: The indices of the metadata still being used after filtering
482 ### aiData: The indices of the data still being used after filtering
483 ### lsQCCOunts: QC info
484 }
485
486 funcBugs <- function(
487 ### Run analysis of all data features against all metadata
488 frmeData,
489 ### Cleaned data including metadata, and data
490 lsData,
491 ### This list is a general container for data as the analysis occurs, think about it as a cache for the analysis
492 aiMetadata,
493 ### Indices of metadata used in analysis
494 aiData,
495 ### Indices of response data
496 aiNotTransformedData,
497 ### Indicies of the data not transformed
498 strData,
499 ### Log file name
500 dSig,
501 ### Significance threshold for the qvalue cut off
502 fInvert=FALSE,
503 ### Invert images to have a black background
504 strDirOut = NA,
505 ### Output project directory
506 funcReg=NULL,
507 ### Function for regularization
508 funcTransform=NULL,
509 ### Function used to transform the data
510 funcUnTransform=NULL,
511 ### If a transform is used the opposite of that transfor must be used on the residuals in the partial residual plots
512 lsNonPenalizedPredictors=NULL,
513 ### These predictors will not be penalized in the feature (model) selection step
514 funcAnalysis=NULL,
515 ### Function to perform association analysis
516 lsRandomCovariates=NULL,
517 ### List of string names of metadata which will be treated as random covariates
518 funcGetResults=NULL,
519 ### Function to unpack results from analysis
520 fDoRPlot=TRUE,
521 ### Plot residuals
522 fOmitLogFile = FALSE,
523 ### Stops the creation of the log file
524 fAllvAll=FALSE,
525 ### Flag to turn on all against all comparisons
526 liNaIndices = list(),
527 ### Indicies of imputed NA data
528 lxParameters=list(),
529 ### List holds parameters for different variable selection techniques
530 strTestingCorrection = "BH",
531 ### Correction for multiple testing
532 fIsUnivariate = FALSE,
533 ### Indicates if the function is univariate
534 fZeroInflated = FALSE
535 ### Indicates to use a zero infalted model
536 ){
537 c_logrMaaslin$debug("Start funcBugs")
538 # If no output directory is indicated
539 # Then make it the current directory
540 if( is.na( strDirOut ) || is.null( strDirOut ) )
541 {
542 if( !is.na( strData ) )
543 {
544 strDirOut <- paste( dirname( strData ), "/", sep = "" )
545 } else { strDirOut = "" }
546 }
547
548 # Make th log file and output file names based on the log file name
549 strLog = NA
550 strBase = ""
551 if(!is.na(strData))
552 {
553 strBaseOut <- paste( strDirOut, sub( "\\.([^.]+)$", "", basename(strData) ), sep = "/" )
554 strLog <- paste( strBaseOut,c_sLogFileSuffix, ".txt", sep = "" )
555 }
556
557 # If indicated, stop the creation of the log file
558 # Otherwise delete the log file if it exists and log
559 if(fOmitLogFile){ strLog = NA }
560 if(!is.na(strLog))
561 {
562 c_logrMaaslin$info( "Outputting to: %s", strLog )
563 unlink( strLog )
564 }
565
566 # Will contain pvalues
567 adP = c()
568 adPAdj = c()
569
570 # List of lists with association information
571 lsSig <- list()
572 # Go through each data that was not previously removed and perform inference
573 for( iTaxon in aiData )
574 {
575 # Log to screen progress per 10 associations.
576 # Can be thown off if iTaxon is missing a mod 10 value
577 # So the taxons may not be logged every 10 but not a big deal
578 if( !( iTaxon %% 10 ) )
579 {
580 c_logrMaaslin$info( "Taxon %d/%d", iTaxon, max( aiData ) )
581 }
582
583 # Call analysis method
584 lsOne <- funcBugHybrid( iTaxon=iTaxon, frmeData=frmeData, lsData=lsData, aiMetadata=aiMetadata, dSig=dSig, adP=adP, lsSig=lsSig, funcTransform=funcTransform, funcUnTransform=funcUnTransform, strLog=strLog, funcReg=funcReg, lsNonPenalizedPredictors=lsNonPenalizedPredictors, funcAnalysis=funcAnalysis, lsRandomCovariates=lsRandomCovariates, funcGetResult=funcGetResults, fAllvAll=fAllvAll, fIsUnivariate=fIsUnivariate, lxParameters=lxParameters, fZeroInflated=fZeroInflated, fIsTransformed= ! iTaxon %in% aiNotTransformedData )
585
586 # If you get a NA (happens when the lmm gets all random covariates) move on
587 if( is.na( lsOne ) ){ next }
588
589 # The updating of the following happens in the inference method call in the funcBugHybrid call
590 # New pvalue array
591 adP <- lsOne$adP
592 # New lsSig contains data about significant feature v metadata comparisons
593 lsSig <- lsOne$lsSig
594 # New qc data
595 lsData$lsQCCounts = lsOne$lsQCCounts
596 }
597
598 # Log the QC info
599 c_logrMaaslin$debug("lsData$lsQCCounts")
600 c_logrMaaslin$debug(format(lsData$lsQCCounts))
601
602 if( is.null( adP ) ) { return( NULL ) }
603
604 # Perform bonferonni corrections on factor data (for levels), calculate the number of tests performed, and FDR adjust for multiple hypotheses
605 # Perform Bonferonni adjustment on factor data
606 for( iADIndex in 1:length( adP ) )
607 {
608 # Only perform on factor data
609 if( is.factor( lsSig[[ iADIndex ]]$metadata ) )
610 {
611 adPAdj = c( adPAdj, funcBonferonniCorrectFactorData( dPvalue = adP[ iADIndex ], vsFactors = lsSig[[ iADIndex ]]$metadata, fIgnoreNAs = length(liNaIndices)>0) )
612 } else {
613 adPAdj = c( adPAdj, adP[ iADIndex ] )
614 }
615 }
616
617 iTests = funcCalculateTestCounts(iDataCount = length(aiData), asMetadata = intersect( lsData$astrMetadata, colnames( frmeData )[aiMetadata] ), asForced = lsNonPenalizedPredictors, asRandom = lsRandomCovariates, fAllvAll = fAllvAll)
618
619 #Get indices of sorted data after the factor correction but before the multiple hypothesis corrections.
620 aiSig <- sort.list( adPAdj )
621
622 # Perform FDR BH
623 adQ = p.adjust(adPAdj, method=strTestingCorrection, n=max(length(adPAdj), iTests))
624
625 # Find all covariates that had significant associations
626 astrNames <- c()
627 for( i in 1:length( lsSig ) )
628 {
629 astrNames <- c(astrNames, lsSig[[i]]$name)
630 }
631 astrNames <- unique( astrNames )
632
633 # Sets up named label return for global plotting
634 lsReturnTaxa <- list()
635 for( j in aiSig )
636 {
637 if( adQ[j] > dSig ) { next }
638 strTaxon <- lsSig[[j]]$taxon
639 if(strTaxon %in% names(lsReturnTaxa))
640 {
641 lsReturnTaxa[[strTaxon]] = min(lsReturnTaxa[[strTaxon]],adQ[j])
642 } else { lsReturnTaxa[[strTaxon]] = adQ[j]}
643 }
644
645 # For each covariate with significant associations
646 # Write out a file with association information
647 for( strName in astrNames )
648 {
649 strFileTXT <- NA
650 strFilePDF <- NA
651 for( j in aiSig )
652 {
653 lsCur <- lsSig[[j]]
654 strCur <- lsCur$name
655
656 if( strCur != strName ) { next }
657
658 strTaxon <- lsCur$taxon
659 adData <- lsCur$data
660 astrFactors <- lsCur$factors
661 adCur <- lsCur$metadata
662 adY <- adData
663
664 if( is.na( strData ) ) { next }
665
666 ## If the text file output is not written to yet
667 ## make the file names, and delete any previous file output
668 if( is.na( strFileTXT ) )
669 {
670 strFileTXT <- sprintf( "%s-%s.txt", strBaseOut, strName )
671 unlink(strFileTXT)
672 funcWrite( c("Variable", "Feature", "Value", "Coefficient", "N", "N not 0", "P-value", "Q-value"), strFileTXT )
673 }
674
675 ## Write text output
676 funcWrite( c(strName, strTaxon, lsCur$orig, lsCur$value, length( adData ), sum( adData > 0 ), adP[j], adQ[j]), strFileTXT )
677
678 ## If the significance meets the threshold
679 ## Write PDF file output
680 if( adQ[j] > dSig ) { next }
681
682 # Do not make residuals plots if univariate is selected
683 strFilePDF = funcPDF( frmeTmp=frmeData, lsCur=lsCur, curPValue=adP[j], curQValue=adQ[j], strFilePDF=strFilePDF, strBaseOut=strBaseOut, strName=strName, funcUnTransform= funcUnTransform, fDoResidualPlot=fDoRPlot, fInvert=fInvert, liNaIndices=liNaIndices )
684 }
685 if( dev.cur( ) != 1 ) { dev.off( ) }
686 }
687 aiTmp <- aiData
688
689 logdebug("End funcBugs", c_logMaaslin)
690 return(list(lsReturnBugs=lsReturnTaxa, lsQCCounts=lsData$lsQCCounts))
691 ### List of data features successfully associated without error and quality control data
692 }
693
694 #Lightly Tested
695 ### Performs analysis for 1 feature
696 ### iTaxon: integer Taxon index to be associated with data
697 ### frmeData: Data frame The full data
698 ### lsData: List of all associated data
699 ### aiMetadata: Numeric vector of indices
700 ### dSig: Numeric significance threshold for q-value cut off
701 ### adP: List of pvalues from associations
702 ### lsSig: List which serves as a cache of data about significant associations
703 ### strLog: String file to log to
704 funcBugHybrid <- function(
705 ### Performs analysis for 1 feature
706 iTaxon,
707 ### integer Taxon index to be associated with data
708 frmeData,
709 ### Data frame, the full data
710 lsData,
711 ### List of all associated data
712 aiMetadata,
713 ### Numeric vector of indices
714 dSig,
715 ### Numeric significance threshold for q-value cut off
716 adP,
717 ### List of pvalues from associations
718 lsSig,
719 ### List which serves as a cache of data about significant associations
720 funcTransform,
721 ### The tranform used on the data
722 funcUnTransform,
723 ### The reverse transform on the data
724 strLog = NA,
725 ### String, file to which to log
726 funcReg=NULL,
727 ### Function to perform regularization
728 lsNonPenalizedPredictors=NULL,
729 ### These predictors will not be penalized in the feature (model) selection step
730 funcAnalysis=NULL,
731 ### Function to perform association analysis
732 lsRandomCovariates=NULL,
733 ### List of string names of metadata which will be treated as random covariates
734 funcGetResult=NULL,
735 ### Function to unpack results from analysis
736 fAllvAll=FALSE,
737 ### Flag to turn on all against all comparisons
738 fIsUnivariate = FALSE,
739 ### Indicates the analysis function is univariate
740 lxParameters=list(),
741 ### List holds parameters for different variable selection techniques
742 fZeroInflated = FALSE,
743 ### Indicates if to use a zero infalted model
744 fIsTransformed = TRUE
745 ### Indicates that the bug is transformed
746 ){
747 #dTime00 <- proc.time()[3]
748 #Get metadata column names
749 astrMetadata = intersect( lsData$astrMetadata, colnames( frmeData )[aiMetadata] )
750
751 #Get data measurements that are not NA
752 aiRows <- which( !is.na( frmeData[,iTaxon] ) )
753
754 #Get the dataframe of non-na data measurements
755 frmeTmp <- frmeData[aiRows,]
756
757 #Set the min boosting selection frequency to a default if not given
758 if( is.na( lxParameters$dFreq ) )
759 {
760 lxParameters$dFreq <- 0.5 / length( c(astrMetadata) )
761 }
762
763 # Get the full data for the bug feature
764 adCur = frmeTmp[,iTaxon]
765 lxParameters$sBugName = names(frmeTmp[iTaxon])
766
767 # This can run multiple models so some of the results are held in lists and some are not
768 llmod = list()
769 liTaxon = list()
770 lastrTerms = list()
771
772 # Build formula for simple mixed effects models
773 # Removes random covariates from variable selection
774 astrMetadata = setdiff(astrMetadata, lsRandomCovariates)
775 strFormula <- paste( "adCur ~", paste( sprintf( "`%s`", astrMetadata ), collapse = " + " ), sep = " " )
776
777 # Document the model
778 funcWrite( c("#taxon", colnames( frmeTmp )[iTaxon]), strLog )
779 funcWrite( c("#metadata", astrMetadata), strLog )
780 funcWrite( c("#samples", rownames( frmeTmp )), strLog )
781
782 #Model terms
783 astrTerms <- c()
784
785 # Attempt feature (model) selection
786 if(!is.na(funcReg))
787 {
788 #Count model selection method attempts
789 lsData$lsQCCounts$iBoosts = lsData$lsQCCounts$iBoosts + 1
790 #Perform model selection
791 astrTerms <- funcReg(strFormula=strFormula, frmeTmp=frmeTmp, adCur=adCur, lsParameters=lxParameters, lsForcedParameters=lsNonPenalizedPredictors, strLog=strLog)
792 #If the feature selection function is set to None, set all terms of the model to all the metadata
793 } else { astrTerms = astrMetadata }
794
795 # Get look through the boosting results to get a model
796 # Holds the predictors in the predictors in the model that were selected by the boosting
797 if(is.null( astrTerms )){lsData$lsQCCounts$iBoostErrors = lsData$lsQCCounts$iBoostErrors + 1}
798
799 # Get the indices that are transformed
800 # Of those indices check for uneven metadata
801 # Untransform any of the metadata that failed
802 # Failed means true for uneven occurences of zeros
803 # if( fIsTransformed )
804 # {
805 # vdUnevenZeroCheck = funcUnTransform( frmeData[[ iTaxon ]] )
806 # if( funcZerosAreUneven( vdRawData=vdUnevenZeroCheck, funcTransform=funcTransform, vsStratificationFeatures=astrTerms, dfData=frmeData ) )
807 # {
808 # frmeData[[ iTaxon ]] = vdUnevenZeroCheck
809 # c_logrMaaslin$debug( paste( "Taxon transformation reversed due to unevenness of zero distribution.", iTaxon ) )
810 # }
811 # }
812
813 # Run association analysis if predictors exist and an analysis function is specified
814 # Run analysis
815 if(!is.na(funcAnalysis) )
816 {
817 #If there are selected and forced fixed covariates
818 if( length( astrTerms ) )
819 {
820 #Count the association attempt
821 lsData$lsQCCounts$iLms = lsData$lsQCCounts$iLms + 1
822
823 #Make the lm formula
824 #Build formula for simple mixed effects models using random covariates
825 strRandomCovariatesFormula = NULL
826 #Random covariates are forced
827 if(length(lsRandomCovariates)>0)
828 {
829 #Format for lme
830 #Needed for changes to not allowing random covariates through the boosting process
831 strRandomCovariatesFormula <- paste( "adCur ~ ", paste( sprintf( "1|`%s`", lsRandomCovariates), collapse = " + " ))
832 }
833
834 #Set up a list of formula containing selected fixed variables changing and the forced fixed covariates constant
835 vstrFormula = c()
836 #Set up suppressing forced covariates in a all v all scenario only
837 asSuppress = c()
838 #Enable all against all comparisons
839 if(fAllvAll && !fIsUnivariate)
840 {
841 lsVaryingCovariates = setdiff(astrTerms,lsNonPenalizedPredictors)
842 lsConstantCovariates = setdiff(lsNonPenalizedPredictors,lsRandomCovariates)
843 strConstantFormula = paste( sprintf( "`%s`", lsConstantCovariates ), collapse = " + " )
844 asSuppress = lsConstantCovariates
845
846 if(length(lsVaryingCovariates)==0L)
847 {
848 vstrFormula <- c( paste( "adCur ~ ", paste( sprintf( "`%s`", lsConstantCovariates ), collapse = " + " )) )
849 } else {
850 for( sVarCov in lsVaryingCovariates )
851 {
852 strTempFormula = paste( "adCur ~ `", sVarCov,"`",sep="")
853 if(length(lsConstantCovariates)>0){ strTempFormula = paste(strTempFormula,strConstantFormula,sep=" + ") }
854 vstrFormula <- c( vstrFormula, strTempFormula )
855 }
856 }
857 } else {
858 #This is either the multivariate case formula for all covariates in an lm or fixed covariates in the lmm
859 vstrFormula <- c( paste( "adCur ~ ", paste( sprintf( "`%s`", astrTerms ), collapse = " + " )) )
860 }
861
862 #Run the association
863 for( strAnalysisFormula in vstrFormula )
864 {
865 i = length(llmod)+1
866 llmod[[i]] = funcAnalysis(strFormula=strAnalysisFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, lsHistory=list(adP=adP, lsSig=lsSig, lsQCCounts=lsData$lsQCCounts), strRandomFormula=strRandomCovariatesFormula, fZeroInflated=fZeroInflated)
867
868 liTaxon[[i]] = iTaxon
869 lastrTerms[[i]] = funcFormulaStrToList(strAnalysisFormula)
870 }
871 } else {
872 #If there are no selected or forced fixed covariates
873 lsData$lsQCCounts$iNoTerms = lsData$lsQCCounts$iNoTerms + 1
874 return(list(adP=adP, lsSig=lsSig, lsQCCounts=lsData$lsQCCounts))
875 }
876 }
877
878 #Call funcBugResults and return it's return
879 if(!is.na(funcGetResult))
880 {
881 #Format the results to a consistent expected result.
882 return( funcGetResult( llmod=llmod, frmeData=frmeData, liTaxon=liTaxon, dSig=dSig, adP=adP, lsSig=lsSig, strLog=strLog, lsQCCounts=lsData$lsQCCounts, lastrCols=lastrTerms, asSuppressCovariates=asSuppress ) )
883 } else {
884 return(list(adP=adP, lsSig=lsSig, lsQCCounts=lsData$lsQCCounts))
885 }
886 ### List containing a list of pvalues, a list of significant data per association, and a list of QC data
887 }