Mercurial > repos > george-weingart > maaslin
comparison src/test-BoostGLM/test-BoostGLM.R @ 8:e9677425c6c3 default tip
Updated the structure of the libraries
author | george.weingart@gmail.com |
---|---|
date | Mon, 09 Feb 2015 12:17:40 -0500 |
parents | e0b5980139d9 |
children |
comparison
equal
deleted
inserted
replaced
7:c72e14eabb08 | 8:e9677425c6c3 |
---|---|
1 c_strDir <- file.path(getwd( ),"..") | |
2 | |
3 source(file.path(c_strDir,"lib","Constants.R")) | |
4 source(file.path(c_strDir,"lib","Utility.R")) | |
5 source(file.path(c_strDir,"lib","AnalysisModules.R")) | |
6 | |
7 # General setup | |
8 covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
9 covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) | |
10 covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) | |
11 covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) | |
12 covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) | |
13 covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) | |
14 frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, adCur= covY) | |
15 iTaxon = 6 | |
16 | |
17 lsCov1 = list() | |
18 lsCov1$name = "Covariate1" | |
19 lsCov1$orig = "Covariate1" | |
20 lsCov1$taxon = "adCur" | |
21 lsCov1$data = covY | |
22 lsCov1$factors = "Covariate1" | |
23 lsCov1$metadata = covX1 | |
24 vdCoef = c() | |
25 vdCoef["(Intercept)"]=round(0.0345077486,5) | |
26 vdCoef["Covariate1"]= round(0.0052097355,5) | |
27 vdCoef["Covariate2"]= round(0.0005806568,5) | |
28 vdCoef["Covariate32"]=round(-0.1333421874,5) | |
29 vdCoef["Covariate33"]=round(-0.1072006419,5) | |
30 vdCoef["Covariate42"]=round(0.0849198280,5) | |
31 lsCov1$value = c(Covariate1=round(0.005209736,5)) | |
32 lsCov1$std = round(0.0063781728,5) | |
33 lsCov1$allCoefs = vdCoef | |
34 lsCov2 = list() | |
35 lsCov2$name = "Covariate2" | |
36 lsCov2$orig = "Covariate2" | |
37 lsCov2$taxon = "adCur" | |
38 lsCov2$data = covY | |
39 lsCov2$factors = "Covariate2" | |
40 lsCov2$metadata = covX2 | |
41 lsCov2$value = c(Covariate2=round(0.0005806568,5)) | |
42 lsCov2$std = round(0.0006598436,5) | |
43 lsCov2$allCoefs = vdCoef | |
44 lsCov3 = list() | |
45 lsCov3$name = "Covariate3" | |
46 lsCov3$orig = "Covariate32" | |
47 lsCov3$taxon = "adCur" | |
48 lsCov3$data = covY | |
49 lsCov3$factors = "Covariate3" | |
50 lsCov3$metadata = covX3 | |
51 lsCov3$value = c(Covariate32=round(-0.1333422,5)) | |
52 lsCov3$std = round(0.0895657826,5) | |
53 lsCov3$allCoefs = vdCoef | |
54 lsCov4 = list() | |
55 lsCov4$name = "Covariate3" | |
56 lsCov4$orig = "Covariate33" | |
57 lsCov4$taxon = "adCur" | |
58 lsCov4$data = covY | |
59 lsCov4$factors = "Covariate3" | |
60 lsCov4$metadata = covX3 | |
61 lsCov4$value = c(Covariate33=round(-0.1072006,5)) | |
62 lsCov4$std = round(0.0792209541,5) | |
63 lsCov4$allCoefs = vdCoef | |
64 lsCov5 = list() | |
65 lsCov5$name = "Covariate4" | |
66 lsCov5$orig = "Covariate42" | |
67 lsCov5$taxon = "adCur" | |
68 lsCov5$data = covY | |
69 lsCov5$factors = "Covariate4" | |
70 lsCov5$metadata = covX4 | |
71 lsCov5$value = c(Covariate42=round(0.08491983,5)) | |
72 lsCov5$std = round(0.0701018621,5) | |
73 lsCov5$allCoefs = vdCoef | |
74 | |
75 context("Test funcClean") | |
76 | |
77 context("Test funcBugHybrid") | |
78 # multiple covariates, one call lm | |
79 aiMetadata = c(1:5) | |
80 aiData = c(iTaxon) | |
81 dFreq = 0.5 / length( aiMetadata ) | |
82 dSig = 0.25 | |
83 dMinSamp = 0.1 | |
84 adP = c() | |
85 lsSig = list() | |
86 funcReg = NA | |
87 funcAnalysis = funcLM | |
88 funcGetResult = funcGetLMResults | |
89 lsData = list(frmeData=frmeTmp, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) | |
90 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
91 | |
92 adPExpected = round(c(0.4738687,0.4436566,0.4665972,0.5378693,0.3124672),5) | |
93 QCExpected = list(iLms=numeric(0)) | |
94 lsSigExpected = list() | |
95 lsSigExpected[[1]] = lsCov1 | |
96 lsSigExpected[[2]] = lsCov2 | |
97 lsSigExpected[[3]] = lsCov3 | |
98 lsSigExpected[[4]] = lsCov4 | |
99 lsSigExpected[[5]] = lsCov5 | |
100 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) | |
101 receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) | |
102 receivedReturn$adP = round(receivedReturn$adP,5) | |
103 | |
104 vCoefs=receivedReturn$lsSig[[1]]$allCoefs | |
105 vCoefs[1]=round(vCoefs[1],5) | |
106 vCoefs[2]=round(vCoefs[2],5) | |
107 vCoefs[3]=round(vCoefs[3],5) | |
108 vCoefs[4]=round(vCoefs[4],5) | |
109 vCoefs[5]=round(vCoefs[5],5) | |
110 vCoefs[6]=round(vCoefs[6],5) | |
111 receivedReturn$lsSig[[1]]$allCoefs=vCoefs | |
112 receivedReturn$lsSig[[2]]$allCoefs=vCoefs | |
113 receivedReturn$lsSig[[3]]$allCoefs=vCoefs | |
114 receivedReturn$lsSig[[4]]$allCoefs=vCoefs | |
115 receivedReturn$lsSig[[5]]$allCoefs=vCoefs | |
116 vValue=c() | |
117 vValue[receivedReturn$lsSig[[1]]$orig]=round(receivedReturn$lsSig[[1]]$value[[1]],5) | |
118 receivedReturn$lsSig[[1]]$value=vValue | |
119 vValue=c() | |
120 vValue[receivedReturn$lsSig[[2]]$orig]=round(receivedReturn$lsSig[[2]]$value[[1]],5) | |
121 receivedReturn$lsSig[[2]]$value=vValue | |
122 vValue=c() | |
123 vValue[receivedReturn$lsSig[[3]]$orig]=round(receivedReturn$lsSig[[3]]$value[[1]],5) | |
124 receivedReturn$lsSig[[3]]$value=vValue | |
125 vValue=c() | |
126 vValue[receivedReturn$lsSig[[4]]$orig]=round(receivedReturn$lsSig[[4]]$value[[1]],5) | |
127 receivedReturn$lsSig[[4]]$value=vValue | |
128 vValue=c() | |
129 vValue[receivedReturn$lsSig[[5]]$orig]=round(receivedReturn$lsSig[[5]]$value[[1]],5) | |
130 receivedReturn$lsSig[[5]]$value=vValue | |
131 receivedReturn$lsSig[[1]]$std=round(receivedReturn$lsSig[[1]]$std,5) | |
132 receivedReturn$lsSig[[2]]$std=round(receivedReturn$lsSig[[2]]$std,5) | |
133 receivedReturn$lsSig[[3]]$std=round(receivedReturn$lsSig[[3]]$std,5) | |
134 receivedReturn$lsSig[[4]]$std=round(receivedReturn$lsSig[[4]]$std,5) | |
135 receivedReturn$lsSig[[5]]$std=round(receivedReturn$lsSig[[5]]$std,5) | |
136 test_that("funcBugHybrid works with the lm option with multiple covariates.",{expect_equal(receivedReturn,expectedReturn)}) | |
137 | |
138 | |
139 # single covariate, single call lm | |
140 aiMetadata = c(1) | |
141 dFreq = 0.5 / length( aiMetadata ) | |
142 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
143 adPExpected = round(c(0.1081731),5) | |
144 QCExpected = list(iLms=numeric(0)) | |
145 lsSigExpected = list() | |
146 lsSigExpected[[1]] = lsCov1 | |
147 lsSigExpected[[1]]$std=round(0.005278468,5) | |
148 vdCoef = c() | |
149 vdCoef["(Intercept)"]=round(-0.102410716,5) | |
150 vdCoef["Covariate1"]= round(0.009718095,5) | |
151 lsSigExpected[[1]]$allCoefs= vdCoef | |
152 lsSigExpected[[1]]$value = c(Covariate1=round(0.009718095,5)) | |
153 | |
154 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) | |
155 receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) | |
156 receivedReturn$adP = round(receivedReturn$adP,5) | |
157 | |
158 vCoefs=receivedReturn$lsSig[[1]]$allCoefs | |
159 vCoefs[1]=round(vCoefs[1],5) | |
160 vCoefs[2]=round(vCoefs[2],5) | |
161 receivedReturn$lsSig[[1]]$allCoefs=vCoefs | |
162 vValue=c() | |
163 vValue[receivedReturn$lsSig[[1]]$orig]=round(receivedReturn$lsSig[[1]]$value[[1]],5) | |
164 receivedReturn$lsSig[[1]]$value=vValue | |
165 receivedReturn$lsSig[[1]]$std=round(0.005278468,5) | |
166 test_that("funcBugHybrid works with the lm option with 1 covariates.",{expect_equal(receivedReturn,expectedReturn)}) | |
167 | |
168 | |
169 # multiple covariate, single call univariate | |
170 funcReg = NA | |
171 funcAnalysis = funcDoUnivariate | |
172 funcGetResult = NA | |
173 aiMetadata = c(3,1,2) | |
174 dFreq = 0.5 / length( aiMetadata ) | |
175 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
176 adPExpected = round(c(1.0,1.0,0.09679784,0.21252205),5) | |
177 QCExpected = list(iLms=numeric(0)) | |
178 lsSigExpected = list() | |
179 lsCov1 = list() | |
180 lsCov1$name = "Covariate3" | |
181 lsCov1$orig = "Covariate32" | |
182 lsCov1$taxon = "adCur" | |
183 lsCov1$data = covY | |
184 lsCov1$factors = "Covariate3" | |
185 lsCov1$metadata = frmeTmp[["Covariate3"]] | |
186 vdCoef = c(Covariate32=NA) | |
187 lsCov1$value = vdCoef | |
188 lsCov1$std = sd(frmeTmp[["Covariate3"]]) | |
189 lsCov1$allCoefs = vdCoef | |
190 lsCov2 = list() | |
191 lsCov2$name = "Covariate3" | |
192 lsCov2$orig = "Covariate33" | |
193 lsCov2$taxon = "adCur" | |
194 lsCov2$data = covY | |
195 lsCov2$factors = "Covariate3" | |
196 lsCov2$metadata = frmeTmp[["Covariate3"]] | |
197 vdCoef = c(Covariate33=NA) | |
198 lsCov2$value = vdCoef | |
199 lsCov2$std = sd(frmeTmp[["Covariate3"]]) | |
200 lsCov2$allCoefs = vdCoef | |
201 lsCov3 = list() | |
202 lsCov3$name = "Covariate1" | |
203 lsCov3$orig = "Covariate1" | |
204 lsCov3$taxon = "adCur" | |
205 lsCov3$data = covY | |
206 lsCov3$factors = "Covariate1" | |
207 lsCov3$metadata = frmeTmp[["Covariate1"]] | |
208 vdCoef = c(Covariate1=0.6) | |
209 lsCov3$value = vdCoef | |
210 lsCov3$std = sd(frmeTmp[["Covariate1"]]) | |
211 lsCov3$allCoefs = vdCoef | |
212 lsCov4 = list() | |
213 lsCov4$name = "Covariate2" | |
214 lsCov4$orig = "Covariate2" | |
215 lsCov4$taxon = "adCur" | |
216 lsCov4$data = covY | |
217 lsCov4$factors = "Covariate2" | |
218 lsCov4$metadata = frmeTmp[["Covariate2"]] | |
219 vdCoef = c(Covariate2=0.46666667) | |
220 lsCov4$value = vdCoef | |
221 lsCov4$std = sd(frmeTmp[["Covariate2"]]) | |
222 lsCov4$allCoefs = vdCoef | |
223 | |
224 lsSigExpected = list() | |
225 lsSigExpected[[1]] = lsCov1 | |
226 lsSigExpected[[2]] = lsCov2 | |
227 lsSigExpected[[3]] = lsCov3 | |
228 lsSigExpected[[4]] = lsCov4 | |
229 | |
230 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) | |
231 receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) | |
232 receivedReturn$adP = round(receivedReturn$adP,5) | |
233 test_that("funcBugHybrid works with the univariate option with 3 covariates.",{expect_equal(receivedReturn,expectedReturn)}) | |
234 | |
235 | |
236 # single covariate, single call univariate | |
237 funcReg = NA | |
238 funcAnalysis = funcDoUnivariate | |
239 funcGetResult = NA | |
240 aiMetadata = c(1) | |
241 dFreq = 0.5 / length( aiMetadata ) | |
242 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
243 adPExpected = round(c(0.09679784),5) | |
244 QCExpected = list(iLms=numeric(0)) | |
245 lsSigExpected = list() | |
246 lsSigExpected[[1]] = lsCov3 | |
247 | |
248 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) | |
249 receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) | |
250 receivedReturn$adP = round(receivedReturn$adP,5) | |
251 test_that("funcBugHybrid works with the univariate option with 1 covariates.",{expect_equal(receivedReturn,expectedReturn)}) | |
252 | |
253 | |
254 context("Test funcBugs") | |
255 #One LM run | |
256 frmeData=frmeTmp | |
257 aiMetadata=c(1) | |
258 aiData=c(iTaxon) | |
259 strData=NA | |
260 dFreq= 0.5 / length( aiMetadata ) | |
261 dSig=0.25 | |
262 dMinSamp=0.1 | |
263 strDirOut=NA | |
264 funcReg=NA | |
265 lsNonPenalizedPredictors=NULL | |
266 lsRandomCovariates=NULL | |
267 funcAnalysis=funcLM | |
268 funcGetResults=funcGetLMResults | |
269 fDoRPlot=FALSE | |
270 lsData = list(frmeData=frmeData, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) | |
271 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
272 QCExpected = list(iLms=numeric(0)) | |
273 | |
274 expectedReturn = list(aiReturnBugs=aiData,lsQCCounts=QCExpected) | |
275 receivedReturn = funcBugs(frmeData=frmeData, lsData=lsData, aiMetadata=aiMetadata, aiData=aiData, strData=strData, dFreq=dFreq, dSig=dSig, dMinSamp=dMinSamp,strDirOut=strDirOut, funcReg=funcReg,lsNonPenalizedPredictors=lsNonPenalizedPredictors,funcAnalysis=funcAnalysis,lsRandomCovariates=lsRandomCovariates,funcGetResults=funcGetResults,fDoRPlot=fDoRPlot) | |
276 | |
277 test_that("funcBugs works with the lm option with 1 covariate.",{expect_equal(receivedReturn,expectedReturn)}) | |
278 | |
279 #multiple LM run | |
280 frmeData=frmeTmp | |
281 aiMetadata=c(1:5) | |
282 aiData=c(iTaxon) | |
283 strData=NA | |
284 dFreq= 0.5 / length( aiMetadata ) | |
285 dSig=0.25 | |
286 dMinSamp=0.1 | |
287 strDirOut=NA | |
288 funcReg=NA | |
289 lsNonPenalizedPredictors=NULL | |
290 lsRandomCovariates=NULL | |
291 funcAnalysis=funcLM | |
292 funcGetResults=funcGetLMResults | |
293 fDoRPlot=FALSE | |
294 lsData = list(frmeData=frmeData, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) | |
295 lsData$astrMetadata = names(frmeTmp)[aiMetadata] | |
296 QCExpected = list(iLms=numeric(0)) | |
297 | |
298 expectedReturn = list(aiReturnBugs=aiData,lsQCCounts=QCExpected) | |
299 receivedReturn = funcBugs(frmeData=frmeData, lsData=lsData, aiMetadata=aiMetadata, aiData=aiData, strData=strData, dFreq=dFreq, dSig=dSig, dMinSamp=dMinSamp,strDirOut=strDirOut, funcReg=funcReg,lsNonPenalizedPredictors=lsNonPenalizedPredictors,funcAnalysis=funcAnalysis,lsRandomCovariates=lsRandomCovariates,funcGetResults=funcGetResults,fDoRPlot=fDoRPlot) | |
300 | |
301 print("START START") | |
302 print(expectedReturn) | |
303 print("RECEIVED") | |
304 print(receivedReturn) | |
305 print("STOP STOP") | |
306 | |
307 test_that("funcBugs works with the lm option with multiple covariates.",{expect_equal(receivedReturn,expectedReturn)}) |