Mercurial > repos > george-weingart > maaslin
diff maaslin-4450aa4ecc84/src/test-AnalysisModules/test-AnalysisModules.R @ 1:a87d5a5f2776
Uploaded the version running on the prod server
author | george-weingart |
---|---|
date | Sun, 08 Feb 2015 23:08:38 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/maaslin-4450aa4ecc84/src/test-AnalysisModules/test-AnalysisModules.R Sun Feb 08 23:08:38 2015 -0500 @@ -0,0 +1,788 @@ +c_strDir <- file.path(getwd( ),"..") + +source(file.path(c_strDir,"lib","Constants.R")) +source(file.path(c_strDir,"lib","Utility.R")) + +#Test Utilities +context("Test funcGetLMResults") +context("Test funcGetStepPredictors") + +context("Test funcMakeContrasts") +covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) +covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) +covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) +covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) +covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) +frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, adCur= covY) +iTaxon = 6 +#Add in updating QC errors +#Add in random covariates +strFormula = "adCur ~ Covariate1" +strRandomFormula = NULL +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = covY +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = covX1 +vdCoef = c(Covariate1=0.6) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(covX1) +lsSig[[1]]$allCoefs = vdCoef +ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, + functionContrast=function(x,adCur,dfData) + { + retList = list() + ret = cor.test(as.formula(paste("~",x,"+ adCur")), data=dfData, method="spearman", na.action=c_strNA_Action) + #Returning rho for the coef in a named vector + vdCoef = c() + vdCoef[[x]]=ret$estimate + retList[[1]]=list(p.value=ret$p.value,SD=sd(dfData[[x]]),name=x,coef=vdCoef) + return(retList) + }, lsQCCounts=list()) +ret1$adP = round(ret1$adP,5) +test_that("1. Test that the funcMakeContrasts works on a continuous variable.",{ + expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list()))}) + +strFormula = "adCur ~ Covariate1 + Covariate2" +strRandomFormula = NULL +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = covY +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = covX1 +vdCoef = c(Covariate1=0.6) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(covX1) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate2" +lsSig[[2]]$orig = "Covariate2" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = covY +lsSig[[2]]$factors = "Covariate2" +lsSig[[2]]$metadata = covX2 +vdCoef = c(Covariate2=0.46666667) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(covX2) +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, + functionContrast=function(x,adCur,dfData) + { + retList = list() + ret = cor.test(as.formula(paste("~",x,"+ adCur")), data=dfData, method="spearman", na.action=c_strNA_Action) + #Returning rho for the coef in a named vector + vdCoef = c() + vdCoef[[x]]=ret$estimate + retList[[1]]=list(p.value=ret$p.value,SD=sd(dfData[[x]]),name=x,coef=vdCoef) + return(retList) + }, lsQCCounts=list()) +ret1$adP = round(ret1$adP,5) +test_that("Test that the funcMakeContrasts works on 2 continuous variables.",{ + expect_equal(ret1,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list()))}) + +strFormula = "adCur ~ Covariate4" +strRandomFormula = NULL +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate42" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = covY +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = covX4 #update +vdCoef = c(Covariate42=NA) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(covX4) #update +lsSig[[1]]$allCoefs = vdCoef +# Get return +rets = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, + functionContrast=function(x,adCur,dfData) + { + retList = list() + lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") + asLevels = levels(dfData[[x]]) + # The names of the generated comparisons, sometimes the control is first sometimes it is not so + # We will just check which is in the names and use that + asComparisons = row.names(lmodKW$comparisons) + #Get the comparison with the control + for(sLevel in asLevels[2:length(asLevels)]) + { + sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) + #Returning NA for the coef in a named vector + vdCoef = c() + vdCoef[[paste(x,sLevel,sep="")]]=NA + retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) + } + return(retList) + }, lsQCCounts=list()) +rets$adP=round(rets$adP,digits=5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels.",{ + expect_equal(rets,list(adP=round(c(0.24434),5),lsSig=lsSig,lsQCCounts=list()))}) + +strFormula = "adCur ~ Covariate3" +strRandomFormula = NULL +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate3" +lsSig[[1]]$orig = "Covariate32" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = covY +lsSig[[1]]$factors = "Covariate3" +lsSig[[1]]$metadata = covX3 #update +vdCoef = c(Covariate32=NA) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(covX3) #update +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate3" +lsSig[[2]]$orig = "Covariate33" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = covY +lsSig[[2]]$factors = "Covariate3" +lsSig[[2]]$metadata = covX3 #update +vdCoef = c(Covariate33=NA) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(covX3) #update +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, + functionContrast=function(x,adCur,dfData) + { + retList = list() + lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") + asLevels = levels(dfData[[x]]) + # The names of the generated comparisons, sometimes the control is first sometimes it is not so + # We will just check which is in the names and use that + asComparisons = row.names(lmodKW$comparisons) + #Get the comparison with the control + for(sLevel in asLevels[2:length(asLevels)]) + { + sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) + #Returning NA for the coef in a named vector + vdCoef = c() + vdCoef[[paste(x,sLevel,sep="")]]=NA + retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) + } + return(retList) + }, lsQCCounts=list()) +ret1$adP = round(ret1$adP,5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 3 levels.",{ + expect_equal(ret1,list(adP=c(1.0,1.0),lsSig=lsSig,lsQCCounts=list()))}) + +strFormula = "adCur ~ Covariate4 + Covariate5" +strRandomFormula = NULL +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate42" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = covY +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = covX4 #update +vdCoef = c(Covariate42=NA) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(covX4) #update +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate5" +lsSig[[2]]$orig = "Covariate52" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = covY +lsSig[[2]]$factors = "Covariate5" +lsSig[[2]]$metadata = covX5 #update +vdCoef = c(Covariate52=NA) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(covX5) #update +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, + functionContrast=function(x,adCur,dfData) + { + retList = list() + lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") + asLevels = levels(dfData[[x]]) + # The names of the generated comparisons, sometimes the control is first sometimes it is not so + # We will just check which is in the names and use that + asComparisons = row.names(lmodKW$comparisons) + #Get the comparison with the control + for(sLevel in asLevels[2:length(asLevels)]) + { + sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) + #Returning NA for the coef in a named vector + vdCoef = c() + vdCoef[[paste(x,sLevel,sep="")]]=NA + retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) + } + return(retList) + }, lsQCCounts=list()) +ret1$adP = round(ret1$adP,5) +test_that("1. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels.",{ + expect_equal(ret1,list(adP=round(c(0.24434,0.655852),5),lsSig=lsSig,lsQCCounts=list()))}) + + +#Test Model selection + + +context("Test funcBoostModel") +context("Test funcForwardModel") +context("Test funcBackwardsModel") + + +#Test Univariates +context("Test funcSpearman") +strFormula = "adCur ~ Covariate1" +adCur = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) +x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +frmeTmp = data.frame(Covariate1=x, adCur=adCur) +iTaxon = 2 +lsQCCounts = list() +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = x +vdCoef = c(Covariate1=0.6) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(x) +lsSig[[1]]$allCoefs = vdCoef +ret1 = funcSpearman(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) +ret1$adP = round(ret1$adP,5) +test_that("Test that the spearman test has the correct results for 1 covariate.",{ + expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) +}) + +strFormula = "adCur ~ Covariate1 + Covariate2" +frmeTmp = data.frame(Covariate1=x, Covariate2=x, adCur=adCur) +iTaxon = 3 +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = x +vdCoef = c(Covariate1=0.6) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(x) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate2" +lsSig[[2]]$orig = "Covariate2" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate2" +lsSig[[2]]$metadata = x +vdCoef = c(Covariate2=0.6) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(x) +lsSig[[2]]$allCoefs = vdCoef +lsQCCounts = list() +ret1 = funcSpearman(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) +ret1$adP = round(ret1$adP,5) +test_that("Test that the spearman test has the correct results for 2 covariates.",{ + expect_equal(ret1,list(adP=round(c(0.09679784,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) +}) + + +context("Test funcWilcoxon") +strFormula = "adCur ~ Covariate1" +x = c(TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE) +frmeTmp = data.frame(Covariate1=x, adCur=adCur) +iTaxon = 2 +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = x +vdCoef = c(Covariate1=13) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(x) +lsSig[[1]]$allCoefs = vdCoef +lsQCCounts = list() +ret1 = funcWilcoxon(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) +ret1$adP = round(ret1$adP,5) +test_that("Test that the wilcoxon test has the correct results for 1 covariate.",{ + expect_equal(ret1,list(adP=round(c(0.55555556),5),lsSig=lsSig,lsQCCounts=list())) +}) + + +context("Test funcKruskalWallis") +strFormula = "adCur ~ Covariate1" +x = as.factor(c("one","two","three","one","one","three","two","three","two")) +frmeTmp = data.frame(Covariate1=x, adCur=adCur) +iTaxon = 2 +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1three" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = x +vdCoef = c(Covariate1three=NA) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(x) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate1" +lsSig[[2]]$orig = "Covariate1two" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate1" +lsSig[[2]]$metadata = x +vdCoef = c(Covariate1two=NA) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(x) +lsSig[[2]]$allCoefs = vdCoef +lsQCCounts = list() +ret1 = funcKruskalWallis(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) +ret1$adP = round(ret1$adP,5) +test_that("Test that the Kruskal Wallis (Nonparameteric anova) has the correct results for 1 covariate.",{ + expect_equal(ret1,list(adP=c(1.0,1.0),lsSig=lsSig,lsQCCounts=list())) +}) + + +context("test funcDoUnivariate") +covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) +covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) +covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) +covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) +covX6 = as.factor(c("one","two","three","one","one","three","two","three","two")) +covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) +frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, Covariate6=covX6, adCur= covY) +iTaxon = 7 +# 1 cont answer +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate1" +lsSig[[1]]$orig = "Covariate1" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate1" +lsSig[[1]]$metadata = frmeTmp[["Covariate1"]] +vdCoef = c(Covariate1=0.6) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate1"]]) +lsSig[[1]]$allCoefs = vdCoef +lsHistory = list(adP=c(), lsSig=c(),lsQCCounts=list()) +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +print("ret1") +print(ret1) +print("list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())") +print(list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) +test_that("2. Test that the funcMakeContrasts works on a continuous variable.",{ + expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate2" +lsSig[[2]]$orig = "Covariate2" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate2" +lsSig[[2]]$metadata = frmeTmp[["Covariate2"]] +vdCoef = c(Covariate2=0.46666667) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate2"]]) +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate1 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory,strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1 + 1|Covariate2") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +test_that("Test that the funcMakeContrasts works on 2 continuous variables.",{ + expect_equal(ret1,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate4" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] +vdCoef = c(Covariate4=5) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) +lsSig[[1]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory,strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels.",{ + expect_equal(ret1,list(adP=round(c(0.2857143),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.2857143),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate5" +lsSig[[2]]$orig = "Covariate5" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate5" +lsSig[[2]]$metadata = frmeTmp[["Covariate5"]] +vdCoef = c(Covariate5=8) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate5"]]) +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate5",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate5") +ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate5") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +ret3$adP = round(ret3$adP,5) +test_that("2. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels.",{ + expect_equal(ret1,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret3,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate4" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] +vdCoef = c(Covariate4=5) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate1" +lsSig[[2]]$orig = "Covariate1" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate1" +lsSig[[2]]$metadata = frmeTmp[["Covariate1"]] +vdCoef = c(Covariate1=0.6) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate1"]]) +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate1") +ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +ret3$adP = round(ret3$adP,5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels and a continuous variable.",{ + expect_equal(ret1,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret3,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate3" +lsSig[[1]]$orig = "Covariate32" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate3" +lsSig[[1]]$metadata = frmeTmp[["Covariate3"]] +vdCoef = c(Covariate32=NA) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate3"]]) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate3" +lsSig[[2]]$orig = "Covariate33" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate3" +lsSig[[2]]$metadata = frmeTmp[["Covariate3"]] +vdCoef = c(Covariate33=NA) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate3"]]) +lsSig[[2]]$allCoefs = vdCoef +lsSig[[3]] = list() +lsSig[[3]]$name = "Covariate1" +lsSig[[3]]$orig = "Covariate1" +lsSig[[3]]$taxon = "adCur" +lsSig[[3]]$data = adCur +lsSig[[3]]$factors = "Covariate1" +lsSig[[3]]$metadata = frmeTmp[["Covariate1"]] +vdCoef = c(Covariate1=0.6) +lsSig[[3]]$value = vdCoef +lsSig[[3]]$std = sd(frmeTmp[["Covariate1"]]) +lsSig[[3]]$allCoefs = vdCoef +lsSig[[4]] = list() +lsSig[[4]]$name = "Covariate2" +lsSig[[4]]$orig = "Covariate2" +lsSig[[4]]$taxon = "adCur" +lsSig[[4]]$data = adCur +lsSig[[4]]$factors = "Covariate2" +lsSig[[4]]$metadata = frmeTmp[["Covariate2"]] +vdCoef = c(Covariate2=0.46666667) +lsSig[[4]]$value = vdCoef +lsSig[[4]]$std = sd(frmeTmp[["Covariate2"]]) +lsSig[[4]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate3 + Covariate1 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate3 + 1|Covariate1 + 1|Covariate2") +ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate3 + Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate2") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +ret3$adP = round(ret3$adP,5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 3 levels and 2 continuous variables.",{ + expect_equal(ret1,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret3,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate4" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] +vdCoef = c(Covariate4=5) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate2" +lsSig[[2]]$orig = "Covariate2" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate2" +lsSig[[2]]$metadata = frmeTmp[["Covariate2"]] +vdCoef = c(Covariate2=0.46666667) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate2"]]) +lsSig[[2]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate2") +ret3 = funcDoUnivariate(strFormula= "adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate2") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +ret3$adP = round(ret3$adP,5) +test_that("3. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels and a continuous variable.",{ + expect_equal(ret1,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret3,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) +}) +lsSig = list() +lsSig[[1]] = list() +lsSig[[1]]$name = "Covariate4" +lsSig[[1]]$orig = "Covariate4" +lsSig[[1]]$taxon = "adCur" +lsSig[[1]]$data = adCur +lsSig[[1]]$factors = "Covariate4" +lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] +vdCoef = c(Covariate4=5) +lsSig[[1]]$value = vdCoef +lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) +lsSig[[1]]$allCoefs = vdCoef +lsSig[[2]] = list() +lsSig[[2]]$name = "Covariate3" +lsSig[[2]]$orig = "Covariate32" +lsSig[[2]]$taxon = "adCur" +lsSig[[2]]$data = adCur +lsSig[[2]]$factors = "Covariate3" +lsSig[[2]]$metadata = frmeTmp[["Covariate3"]] +vdCoef = c(Covariate32=NA) +lsSig[[2]]$value = vdCoef +lsSig[[2]]$std = sd(frmeTmp[["Covariate3"]]) +lsSig[[2]]$allCoefs = vdCoef +lsSig[[3]] = list() +lsSig[[3]]$name = "Covariate3" +lsSig[[3]]$orig = "Covariate33" +lsSig[[3]]$taxon = "adCur" +lsSig[[3]]$data = adCur +lsSig[[3]]$factors = "Covariate3" +lsSig[[3]]$metadata = frmeTmp[["Covariate3"]] +vdCoef = c(Covariate33=NA) +lsSig[[3]]$value = vdCoef +lsSig[[3]]$std = sd(frmeTmp[["Covariate3"]]) +lsSig[[3]]$allCoefs = vdCoef +lsSig[[4]] = list() +lsSig[[4]]$name = "Covariate2" +lsSig[[4]]$orig = "Covariate2" +lsSig[[4]]$taxon = "adCur" +lsSig[[4]]$data = adCur +lsSig[[4]]$factors = "Covariate2" +lsSig[[4]]$metadata = frmeTmp[["Covariate2"]] +vdCoef = c(Covariate2=0.46666667) +lsSig[[4]]$value = vdCoef +lsSig[[4]]$std = sd(frmeTmp[["Covariate2"]]) +lsSig[[4]]$allCoefs = vdCoef +ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate3 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) +ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 +1|Covariate3 + 1|Covariate2") +ret1$adP = round(ret1$adP,5) +ret2$adP = round(ret2$adP,5) +test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels , 1 factor with 3 levels, and a continuous variable.",{ + expect_equal(ret1,list(adP=round(c(0.2857143,1.0,1.0,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) + expect_equal(ret2,list(adP=round(c(0.2857143,1.0,1.0,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) +}) + +#Test multivariates +context("Test funcLasso") + + +context("Test funcLM") +#This test just makes sure the statistical method is being called correctly for one covariate with the correct return +strFormula = "adCur ~ Covariate1" +strRandomFormula = NULL +x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) +xf1 = c(1,1,2,2,1,2,1,1,2) +xf2 = c(1,1,1,1,2,2,2,2,2) +frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) +iTaxon = 5 +lmRet = lm(as.formula(strFormula), data=frmeTmp, na.action = c_strNA_Action) +test_that("Test that the lm has the correct results for 1 covariate.",{ + expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +#Test for correct call for 2 covariates +strFormula = "adCur ~ Covariate1 + Covariate2" +lmRet = lm(as.formula(strFormula), data=frmeTmp, na.action = c_strNA_Action) +test_that("Test that the lm has the correct results for 2 covariates.",{ + expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +##Test for correct call with 1 random and one fixed covariate +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ +# expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 1 random and 2 fixed covariates +#strFormula = "adCur ~ Covariate1 + Covariate2" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ +# expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 2 random and 1 fixed covariates +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate4+1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) +#test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ +# expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) + + +context("Test funcBinomialMult") +strFormula = "adCur ~ Covariate1" +strRandomFormula = NULL +x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) +xf1 = c(1,1,2,2,1,2,1,1,2) +xf2 = c(1,1,1,1,2,2,2,2,2) +frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) +iTaxon = 5 +lmRet = glm(as.formula(strFormula), family=binomial(link=logit), data=frmeTmp, na.action=c_strNA_Action) +test_that("Test that the neg binomial regression has the correct results for 1 covariate.",{ + expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +#Test for correct call for 2 covariates +strFormula = "adCur ~ Covariate1 + Covariate2" +iTaxon = 5 +lmRet = glm(as.formula(strFormula), family=binomial(link=logit), data=frmeTmp, na.action=c_strNA_Action) +test_that("Test that the neg binomial regression has the correct results for 2 covariates.",{ + expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +##Test for correct call with 1 random and one fixed covariate +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ +# expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 1 random and 2 fixed covariates +#strFormula = "adCur ~ Covariate1 + Covariate2" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ +# expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 2 random and 1 fixed covariates +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate4+1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) +#test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ +# expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) + + +context("Test funcQuasiMult") +strFormula = "adCur ~ Covariate1" +strRandomFormula = NULL +x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1,44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) +x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9,34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) +xf1 = c(1,1,2,2,1,1,2,2,2,1,1,2,2,1,1,2,2,2) +xf2 = c(1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,2,2,2) +frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) +iTaxon = 5 +lmRet = glm(as.formula(strFormula), family=quasipoisson, data=frmeTmp, na.action=c_strNA_Action) +test_that("Test that the quasi poisson has the correct results for 1 covariate.",{ + expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +#Test for correct call for 2 covariates +strFormula = "adCur ~ Covariate1 + Covariate2" +iTaxon = 5 +lmRet = glm(as.formula(strFormula), family=quasipoisson, data=frmeTmp, na.action=c_strNA_Action) +test_that("Test that the quasi poisson has the correct results for 2 covariates.",{ + expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +}) +##Test for correct call with 1 random and one fixed covariate +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ +# expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 1 random and 2 fixed covariates +#strFormula = "adCur ~ Covariate1 + Covariate2" +#strRandomFormula = "~1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) +#test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ +# expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) +##Test for correct call with 2 random and 1 fixed covariates +#strFormula = "adCur ~ Covariate1" +#strRandomFormula = "~1|FCovariate4+1|FCovariate3" +#lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) +#test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ +# expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) +#}) + + +#Test transforms +context("Test funcNoTransform") +aTest1 = c(NA) +aTest2 = c(NULL) +aTest3 = c(0.5,1.4,2.4,3332.4,0.0,0.0000003) +aTest4 = c(0.1) +test_that("Test that no transform does not change the data.",{ + expect_equal(funcNoTransform(aTest1), aTest1) + expect_equal(funcNoTransform(aTest2), aTest2) + expect_equal(funcNoTransform(aTest3), aTest3) + expect_equal(funcNoTransform(aTest4), aTest4) +}) + + +context("Test funcArcsinSqrt") +aTest1 = c(NA) +aTest2 = c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) +aTest3 = c(0.000001) +test_that("Test that funcArcsinSqrt performs the transform correctly.",{ + expect_equal(funcArcsinSqrt(NA), as.numeric(NA)) + expect_equal(funcArcsinSqrt(aTest1), asin(sqrt(aTest1))) + expect_equal(funcArcsinSqrt(aTest2), asin(sqrt(aTest2))) + expect_equal(funcArcsinSqrt(aTest3), asin(sqrt(aTest3))) +}) \ No newline at end of file