Mercurial > repos > george-weingart > maaslin
view maaslin-4450aa4ecc84/src/MaaslinToGraphlanAnnotation.py @ 1:a87d5a5f2776
Uploaded the version running on the prod server
author | george-weingart |
---|---|
date | Sun, 08 Feb 2015 23:08:38 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python ##################################################################################### #Copyright (C) <2012> # #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in the #Software without restriction, including without limitation the rights to use, copy, #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, #and to permit persons to whom the Software is furnished to do so, subject to #the following conditions: # #The above copyright notice and this permission notice shall be included in all copies #or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), # authored by the Huttenhower lab at the Harvard School of Public Health # (contact Timothy Tickle, ttickle@hsph.harvard.edu). ##################################################################################### __author__ = "Timothy Tickle" __copyright__ = "Copyright 2012" __credits__ = ["Timothy Tickle"] __license__ = "" __version__ = "" __maintainer__ = "Timothy Tickle" __email__ = "ttickle@sph.harvard.edu" __status__ = "Development" import argparse import csv import math from operator import itemgetter import re import string import sys #def funcGetColor(fNumeric,fMax): # if fNumeric>0: # return("#"+str(int(99*fNumeric/fMax)).zfill(2)+"0000") # if fNumeric<0: # return("#00"+str(int(99*abs(fNumeric/fMax))).zfill(2)+"00") # return("#000000") def funcGetColor(fNumeric): if fNumeric>0: return sRingPositiveColor else: return sRingNegativeColor def funcGetAlpha(fNumeric,fMax): return max(abs(fNumeric/fMax),dMinAlpha) #Constants sAnnotation = "annotation" sAnnotationColor = "annotation_background_color" sClass = "class" sRingAlpha = "ring_alpha" dMinAlpha = .075 sRingColor = "ring_color" sRingHeight = "ring_height" #sRingHeightMin = 0.5 sStandardizedRingHeight = "1.01" sRingLabel = "ring_label" sRingLabelSizeWord = "ring_label_font_size" sRingLabelSize = 10 sRingLineColor = "#999999" sRingPositiveWord = "Positive" sRingPositiveColor = "#990000" sRingNegativeWord = "Negative" sRingNegativeColor = "#009900" sRingLineColorWord = "ring_separator_color" sRingLineThickness = "0.5" sRingLineThicknessWord = "ring_internal_separator_thickness" sCladeMarkerColor = "clade_marker_color" sCladeMarkerSize = "clade_marker_size" sHighlightedMarkerSize = "10" c_dMinDoubleValue = 0.00000000001 #Set up arguments reader argp = argparse.ArgumentParser( prog = "MaaslinToGraphlanAnnotation.py", description = """Converts summary files to graphlan annotation files.""" ) #### Read in information #Arguments argp.add_argument("strInputSummary", metavar = "SummaryFile", type = argparse.FileType("r"), help ="Input summary file produced by maaslin") argp.add_argument("strInputCore", metavar = "CoreFile", type = argparse.FileType("r"), help ="Core file produced by Graphlan from the maaslin pcl") argp.add_argument("strInputHeader", metavar = "HeaderFile", type = argparse.FileType("r"), help ="Input header file to append to the generated annotation file.") argp.add_argument("strOutputAnnotation", metavar = "AnnotationFile", type = argparse.FileType("w"), help ="Output annotation file for graphlan") args = argp.parse_args( ) #Read in the summary file and transform to class based descriptions csvSum = open(args.strInputSummary,'r') if isinstance(args.strInputSummary, str) else args.strInputSummary fSum = csv.reader(csvSum, delimiter="\t") #Skip header (until i do this a better way) fSum.next() #Extract associations (Metadata,taxon,coef,qvalue) lsAssociations = [[sLine[1],sLine[2],sLine[4],sLine[7]] for sLine in fSum] csvSum.close() #### Read in default graphlan settings provided by maaslin #Read in the annotation header file csvHdr = open(args.strInputHeader,'r') if isinstance(args.strInputHeader, str) else args.strInputHeader fHdr = csv.reader(csvHdr, delimiter="\t") #Begin writting the output #Output annotation file csvAnn = open(args.strOutputAnnotation,'w') if isinstance(args.strOutputAnnotation, str) else args.strOutputAnnotation fAnn = csv.writer(csvAnn, delimiter="\t") fAnn.writerows(fHdr) csvHdr.close() #If no associatiosn were found if(len(lsAssociations)==0): csvAnn.close() else: #### Fix name formats #Manipulate names to graphlan complient names (clades seperated by .) lsAssociations = sorted(lsAssociations, key=itemgetter(1)) lsAssociations = [[sBug[0]]+[re.sub("^[A-Za-z]__","",sBug[1])]+sBug[2:] for sBug in lsAssociations] lsAssociations = [[sBug[0]]+[re.sub("\|*[A-Za-z]__|\|",".",sBug[1])]+sBug[2:] for sBug in lsAssociations] #If this is an OTU, append the number and the genus level together for a more descriptive termal name lsAssociationsModForOTU = [] for sBug in lsAssociations: lsBug = sBug[1].split(".") if(len(lsBug))> 1: if(lsBug[-1].isdigit()): lsBug[-2]=lsBug[-2]+"_"+lsBug[-1] lsBug = lsBug[0:-1] lsAssociationsModForOTU.append([sBug[0]]+[".".join(lsBug)]+sBug[2:]) else: lsAssociationsModForOTU.append([sBug[0]]+[lsBug[0]]+sBug[2:]) #Extract just class info #lsClassData = [[sLine[2],sClass,sLine[1]] for sLine in fSum] ### Make rings #Setup rings dictRings = dict([[enumData[1],enumData[0]] for enumData in enumerate(set([lsData[0] for lsData in lsAssociationsModForOTU]))]) #Ring graphlan setting: rings represent a metadata that associates with a feature #Rings have a line to help differetiate them lsRingSettings = [[sRingLabel,lsPair[1],lsPair[0]] for lsPair in dictRings.items()] lsRingLineColors = [[sRingLineColorWord,lsPair[1],sRingLineColor] for lsPair in dictRings.items()] lsRingLineThick = [[sRingLineThicknessWord,lsPair[1],sRingLineThickness] for lsPair in dictRings.items()] lsRingLineLabelSize = [[sRingLabelSizeWord,lsPair[1], sRingLabelSize] for lsPair in dictRings.items()] #Create coloring for rings color represents the directionality of the relationship dMaxCoef = max([abs(float(sAssociation[2])) for sAssociation in lsAssociationsModForOTU]) lsRingColors = [[lsAssociation[1], sRingColor, dictRings[lsAssociation[0]], funcGetColor(float(lsAssociation[2]))] for lsAssociation in lsAssociationsModForOTU] lsRingAlpha = [[lsAssociation[1], sRingAlpha, dictRings[lsAssociation[0]], funcGetAlpha(float(lsAssociation[2]), dMaxCoef)] for lsAssociation in lsAssociationsModForOTU] #Create height for rings representing the log tranformed q-value? dMaxQValue = max([-1*math.log(max(float(sAssociation[3]), c_dMinDoubleValue)) for sAssociation in lsAssociationsModForOTU]) #lsRingHeights = [[lsAssociation[1], sRingHeight, dictRings[lsAssociation[0]], ((-1*math.log(max(float(lsAssociation[3]), c_dMinDoubleValue)))/dMaxQValue)+sRingHeightMin] for lsAssociation in lsAssociationsModForOTU] lsRingHeights = [[lsAssociation[1], sRingHeight, dictRings[lsAssociation[0]], sStandardizedRingHeight] for lsAssociation in lsAssociationsModForOTU] #### Marker # Marker colors (mainly to make legend lsMarkerColors = [[lsAssociation[1], sCladeMarkerColor, funcGetColor(float(lsAssociation[2]))] for lsAssociation in lsAssociationsModForOTU] lsMarkerSizes = [[lsAssociation[1], sCladeMarkerSize, sHighlightedMarkerSize] for lsAssociation in lsAssociationsModForOTU] #### Make internal highlights #Highlight the associated clades lsUniqueAssociatedTaxa = sorted(list(set([lsAssociation[1] for lsAssociation in lsAssociationsModForOTU]))) lsHighlights = [] sABCPrefix = "" sListABC = string.ascii_lowercase iListABCIndex = 0 for lsHighlight in lsUniqueAssociatedTaxa: lsTaxa = lsHighlight.split(".") sLabel = sABCPrefix+sListABC[iListABCIndex]+":"+lsTaxa[-1] if len(lsTaxa) > 2 else lsTaxa[-1] lsHighlights.append([lsHighlight, sAnnotation, sLabel]) iListABCIndex = iListABCIndex + 1 if iListABCIndex > 25: iListABCIndex = 0 sABCPrefix = sABCPrefix + sListABC[len(sABCPrefix)] #Read in the core file csvCore = open(args.strInputCore,'r') if isinstance(args.strInputCore, str) else args.strInputCore fSum = csv.reader(csvCore, delimiter="\t") #Add in all phylum just incase they were not already included here lsAddSecondLevel = list(set([sUnique[0].split(".")[1] for sUnique in fSum if len(sUnique[0].split(".")) > 1])) lsHighlights.extend([[sSecondLevel, sAnnotation, sSecondLevel] for sSecondLevel in lsAddSecondLevel]) lsHighlightColor = [[lsHighlight[0], sAnnotationColor,"b"] for lsHighlight in lsHighlights] #### Write the remaining output annotation file fAnn.writerows(lsRingSettings) fAnn.writerows(lsRingLineColors) fAnn.writerows(lsRingColors) fAnn.writerows(lsRingAlpha) fAnn.writerows(lsRingLineThick) fAnn.writerows(lsRingLineLabelSize) fAnn.writerows(lsRingHeights) fAnn.writerows(lsMarkerColors) fAnn.writerows(lsMarkerSizes) fAnn.writerows([[sRingPositiveWord, sCladeMarkerColor, sRingPositiveColor]]) fAnn.writerows([[sRingNegativeWord, sCladeMarkerColor, sRingNegativeColor]]) fAnn.writerows(lsHighlights) fAnn.writerows(lsHighlightColor) csvAnn.close()