Mercurial > repos > george-weingart > maaslin
view src/Maaslin.R @ 0:e0b5980139d9
maaslin
author | george-weingart |
---|---|
date | Tue, 13 May 2014 22:00:40 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript ##################################################################################### #Copyright (C) <2012> # #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in the #Software without restriction, including without limitation the rights to use, copy, #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, #and to permit persons to whom the Software is furnished to do so, subject to #the following conditions: # #The above copyright notice and this permission notice shall be included in all copies #or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), # authored by the Huttenhower lab at the Harvard School of Public Health # (contact Timothy Tickle, ttickle@hsph.harvard.edu). ##################################################################################### inlinedocs <- function( ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu> ##description<< Main driver script. Should be called to perform MaAsLin Analysis. ) { return( pArgs ) } ### Install packages if not already installed vDepLibrary = c("agricolae", "gam", "gamlss", "gbm", "glmnet", "inlinedocs", "logging", "MASS", "nlme", "optparse", "outliers", "penalized", "pscl", "robustbase", "testthat") for(sDepLibrary in vDepLibrary) { if(! require(sDepLibrary, character.only=TRUE) ) { install.packages(pkgs=sDepLibrary, repos="http://cran.us.r-project.org") } } ### Logging class suppressMessages(library( logging, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE)) ### Class for commandline argument processing suppressMessages(library( optparse, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE)) ### Create command line argument parser pArgs <- OptionParser( usage = "%prog [options] <output.txt> <data.tsv>" ) # Input files for MaAsLin ## Data configuration file pArgs <- add_option( pArgs, c("-i", "--input_config"), type="character", action="store", dest="strInputConfig", metavar="data.read.config", help="Optional configuration file describing data input format.") ## Data manipulation/normalization file pArgs <- add_option( pArgs, c("-I", "--input_process"), type="character", action="store", dest="strInputR", metavar="data.R", help="Optional configuration script normalizing or processing data.") # Settings for MaAsLin ## Maximum false discovery rate pArgs <- add_option( pArgs, c("-d", "--fdr"), type="double", action="store", dest="dSignificanceLevel", default=0.25, metavar="significance", help="The threshold to use for significance for the generated q-values (BH FDR). Anything equal to or lower than this is significant. [Default %default]") ## Minimum feature relative abundance filtering pArgs <- add_option( pArgs, c("-r", "--minRelativeAbundance"), type="double", action="store", dest="dMinAbd", default=0.0001, metavar="minRelativeAbundance", help="The minimum relative abundance allowed in the data. Values below this are removed and imputed as the median of the sample data. [Default %default]") ## Minimum feature prevalence filtering pArgs <- add_option( pArgs, c("-p", "--minPrevalence"), type="double", action="store", dest="dMinSamp", default=0.1, metavar="minPrevalence", help="The minimum percentage of samples a feature can have abundance in before being removed. Also is the minimum percentage of samples a metadata can have that are not NA before being removed. [Default %default]") ## Fence for outlier, if not set Grubbs test is used pArgs <- add_option( pArgs, c("-o", "--outlierFence"), type="double", action="store", dest="dOutlierFence", default=0, metavar="outlierFence", help="Outliers are defined as this number times the interquartile range added/subtracted from the 3rd/1st quartiles respectively. If set to 0 (default), outliers are defined by the Grubbs test. [Default %default]") ## Significance for Grubbs test pArgs <- add_option(pArgs, c("-G","--grubbsSig"), type="double", action="store", dest="dPOutlier", default=0.05, metavar="grubbsAlpha", help="This is the significance cuttoff used to indicate an outlier or not. The closer to zero, the more significant an outlier must be to be removed. [Default %default]") ## Fixed (not random) covariates pArgs <- add_option( pArgs, c("-R","--random"), type="character", action="store", dest="strRandomCovariates", default=NULL, metavar="fixed", help="These metadata will be treated as random covariates. Comma delimited data feature names. These features must be listed in the read.config file. Example '-R RandomMetadata1,RandomMetadata2'. [Default %default]") ## Change the type of correction fo rmultiple corrections pArgs <- add_option( pArgs, c("-T","--testingCorrection"), type="character", action="store", dest="strMultTestCorrection", default="BH", metavar="multipleTestingCorrection", help="This indicates which multiple hypothesis testing method will be used, available are holm, hochberg, hommel, bonferroni, BH, BY. [Default %default]") ## Use a zero inflated model of the inference method indicate in -m pArgs <- add_option( pArgs, c("-z","--doZeroInfated"), type="logical", action="store_true", default = FALSE, dest="fZeroInflated", metavar="fZeroInflated", help="If true, the zero inflated version of the inference model indicated in -m is used. For instance if using lm, zero-inflated regression on a gaussian distribution is used. [Default %default].") # Arguments used in validation of MaAsLin ## Model selection (enumerate) c("none","boost","penalized","forward","backward") pArgs <- add_option( pArgs, c("-s", "--selection"), type="character", action="store", dest="strModelSelection", default="boost", metavar="model_selection", help="Indicates which of the variable selection techniques to use. [Default %default]") ## Argument indicating which method should be ran (enumerate) c("univariate","lm","neg_binomial","quasi") pArgs <- add_option( pArgs, c("-m", "--method"), type="character", action="store", dest="strMethod", default="lm", metavar="analysis_method", help="Indicates which of the statistical inference methods to run. [Default %default]") ## Argument indicating which link function is used c("none","asinsqrt") pArgs <- add_option( pArgs, c("-l", "--link"), type="character", action="store", dest="strTransform", default="asinsqrt", metavar="transform_method", help="Indicates which link or transformation to use with a glm, if glm is not selected this argument will be set to none. [Default %default]") pArgs <- add_option( pArgs, c("-Q","--NoQC"), type="logical", action="store_true", default=FALSE, dest="fNoQC", metavar="Do_Not_Run_QC", help="Indicates if the quality control will be ran on the metadata/data. Default is true. [Default %default]") # Arguments to suppress MaAsLin actions on certain data ## Do not perform model selection on the following data pArgs <- add_option( pArgs, c("-F","--forced"), type="character", action="store", dest="strForcedPredictors", default=NULL, metavar="forced_predictors", help="Metadata features that will be forced into the model seperated by commas. These features must be listed in the read.config file. Example '-F Metadata2,Metadata6,Metadata10'. [Default %default]") ## Do not impute the following pArgs <- add_option( pArgs, c("-n","--noImpute"), type="character", action="store", dest="strNoImpute", default=NULL, metavar="no_impute", help="These data will not be imputed. Comma delimited data feature names. Example '-n Feature1,Feature4,Feature6'. [Default %default]") #Miscellaneouse arguments ### Argument to control logging (enumerate) strDefaultLogging = "DEBUG" pArgs <- add_option( pArgs, c("-v", "--verbosity"), type="character", action="store", dest="strVerbosity", default=strDefaultLogging, metavar="verbosity", help="Logging verbosity [Default %default]") ### Run maaslin without creating a log file pArgs <- add_option( pArgs, c("-O","--omitLogFile"), type="logical", action="store_true", default=FALSE, dest="fOmitLogFile", metavar="omitlogfile",help="Including this flag will stop the creation of the output log file. [Default %default]") ### Argument for inverting background to black pArgs <- add_option( pArgs, c("-t", "--invert"), type="logical", action="store_true", dest="fInvert", default=FALSE, metavar="invert", help="When given, flag indicates to invert the background of figures to black. [Default %default]") ### Selection Frequency pArgs <- add_option( pArgs, c("-f","--selectionFrequency"), type="double", action="store", dest="dSelectionFrequency", default=NA, metavar="selectionFrequency", help="Selection Frequency for boosting (max 1 will remove almost everything). Interpreted as requiring boosting to select metadata 100% percent of the time (or less if given a number that is less). Value should be between 1 (100%) and 0 (0%), NA (default is determined by data size).") ### All v All pArgs <- add_option( pArgs, c("-a","--allvall"), type="logical", action="store_true", dest="fAllvAll", default=FALSE, metavar="compare_all", help="When given, the flag indicates that each fixed covariate that is not indicated as Forced is compared once at a time per data feature (bug). Made to be used with the -F option to specify one part of the model while allowing the other to cycle through a group of covariates. Does not affect Random covariates, which are always included when specified. [Default %default]") pArgs <- add_option( pArgs, c("-N","--PlotNA"), type="logical", action="store_true", default=FALSE, dest="fPlotNA", metavar="plotNAs",help="Plot data that was originally NA, by default they are not plotted. [Default %default]") ### Alternative methodology settings pArgs <- add_option( pArgs, c("-A","--pAlpha"), type="double", action="store", dest="dPenalizedAlpha", default=0.95, metavar="PenalizedAlpha",help="The alpha for penalization (1.0=L1 regularization, LASSO; 0.0=L2 regularization, ridge regression. [Default %default]") ### Pass an alternative library dir pArgs <- add_option( pArgs, c("-L", "--libdir"), action="store", dest="sAlternativeLibraryLocation", default=file.path( "","usr","share","biobakery" ), metavar="AlternativeLibraryDirectory", help="An alternative location to find the lib directory. This dir and children will be searched for the first maaslin/src/lib dir.") ### Misc biplot arguments pArgs <- add_option( pArgs, c("-M","--BiplotMetadataScale"), type="double", action="store", dest="dBiplotMetadataScale", default=1, metavar="scaleForMetadata", help="A real number used to scale the metadata labels on the biplot (otherwise a default will be selected from the data). [Default %default]") pArgs <- add_option( pArgs, c("-C", "--BiplotColor"), type="character", action="store", dest="strBiplotColor", default=NULL, metavar="BiplotColorCovariate", help="A continuous metadata that will be used to color samples in the biplot ordination plot (otherwise a default will be selected from the data). Example Age [Default %default]") pArgs <- add_option( pArgs, c("-S", "--BiplotShapeBy"), type="character", action="store", dest="strBiplotShapeBy", default=NULL, metavar="BiplotShapeCovariate", help="A discontinuous metadata that will be used to indicate shapes of samples in the Biplot ordination plot (otherwise a default will be selected from the data). Example Sex [Default %default]") pArgs <- add_option( pArgs, c("-P", "--BiplotPlotFeatures"), type="character", action="store", dest="strBiplotPlotFeatures", default=NULL, metavar="BiplotFeaturesToPlot", help="Metadata and data features to plot (otherwise a default will be selected from the data). Comma Delimited.") pArgs <- add_option( pArgs, c("-D", "--BiplotRotateMetadata"), type="character", action="store", dest="sRotateByMetadata", default=NULL, metavar="BiplotRotateMetadata", help="Metadata to use to rotate the biplot. Format 'Metadata,value'. 'Age,0.5' . [Default %default]") pArgs <- add_option( pArgs, c("-B", "--BiplotShapes"), type="character", action="store", dest="sShapes", default=NULL, metavar="BiplotShapes", help="Specify shapes specifically for metadata or metadata values. [Default %default]") pArgs <- add_option( pArgs, c("-b", "--BugCount"), type="integer", action="store", dest="iNumberBugs", default=3, metavar="PlottedBugCount", help="The number of bugs automatically selected from the data to plot. [Default %default]") pArgs <- add_option( pArgs, c("-E", "--MetadataCount"), type="integer", action="store", dest="iNumberMetadata", default=NULL, metavar="PlottedMetadataCount", help="The number of metadata automatically selected from the data to plot. [Default all significant metadata and minimum is 1]") #pArgs <- add_option( pArgs, c("-c","--MFAFeatureCount"), type="integer", action="store", dest="iMFAMaxFeatures", default=3, metavar="maxMFAFeature", help="Number of features or number of bugs to plot (default=3; 3 metadata and 3 data).") main <- function( ### The main function manages the following: ### 1. Optparse arguments are checked ### 2. A logger is created if requested in the optional arguments ### 3. The custom R script is sourced. This is the input *.R script named ### the same as the input *.pcl file. This script contains custom formating ### of data and function calls to the MFA visualization. ### 4. Matrices are written to the project folder as they are read in seperately as metadata and data and merged together. ### 5. Data is cleaned with custom filtering if supplied in the *.R script. ### 6. Transformations occur if indicated by the optional arguments ### 7. Standard quality control is performed on data ### 8. Cleaned metadata and data are written to output project for documentation. ### 9. A regularization method is ran (boosting by default). ### 10. An analysis method is performed on the model (optionally boosted model). ### 11. Data is summarized and PDFs are created for significant associations ### (those whose q-values {BH FDR correction} are <= the threshold given in the optional arguments. pArgs ### Parsed commandline arguments ){ lsArgs <- parse_args( pArgs, positional_arguments = TRUE ) #logdebug("lsArgs", c_logrMaaslin) #logdebug(paste(lsArgs,sep=" "), c_logrMaaslin) # Parse parameters lsForcedParameters = NULL if(!is.null(lsArgs$options$strForcedPredictors)) { lsForcedParameters = unlist(strsplit(lsArgs$options$strForcedPredictors,",")) } xNoImpute = NULL if(!is.null(lsArgs$options$strNoImpute)) { xNoImpute = unlist(strsplit(lsArgs$options$strNoImpute,"[,]")) } lsRandomCovariates = NULL if(!is.null(lsArgs$options$strRandomCovariates)) { lsRandomCovariates = unlist(strsplit(lsArgs$options$strRandomCovariates,"[,]")) } lsFeaturesToPlot = NULL if(!is.null(lsArgs$options$strBiplotPlotFeatures)) { lsFeaturesToPlot = unlist(strsplit(lsArgs$options$strBiplotPlotFeatures,"[,]")) } #If logging is not an allowable value, inform user and set to INFO if(length(intersect(names(loglevels), c(lsArgs$options$strVerbosity))) == 0) { print(paste("Maaslin::Error. Did not understand the value given for logging, please use any of the following: DEBUG,INFO,WARN,ERROR.")) print(paste("Maaslin::Warning. Setting logging value to \"",strDefaultLogging,"\".")) } # Do not allow mixed effect models and zero inflated models, don't have implemented if(lsArgs$options$fZeroInflated && !is.null(lsArgs$options$strRandomCovariates)) { stop("MaAsLin Error:: The combination of zero inflated models and mixed effects models are not supported.") } ### Create logger c_logrMaaslin <- getLogger( "maaslin" ) addHandler( writeToConsole, c_logrMaaslin ) setLevel( lsArgs$options$strVerbosity, c_logrMaaslin ) #Get positional arguments if( length( lsArgs$args ) != 2 ) { stop( print_help( pArgs ) ) } ### Output file name strOutputTXT <- lsArgs$args[1] ### Input TSV data file strInputTSV <- lsArgs$args[2] # Get analysis method options # includes data transformations, model selection/regularization, regression models/links lsArgs$options$strModelSelection = tolower(lsArgs$options$strModelSelection) if(!lsArgs$options$strModelSelection %in% c("none","boost","penalized","forward","backward")) { logerror(paste("Received an invalid value for the selection argument, received '",lsArgs$options$strModelSelection,"'"), c_logrMaaslin) stop( print_help( pArgs ) ) } lsArgs$options$strMethod = tolower(lsArgs$options$strMethod) if(!lsArgs$options$strMethod %in% c("univariate","lm","neg_binomial","quasi")) { logerror(paste("Received an invalid value for the method argument, received '",lsArgs$options$strMethod,"'"), c_logrMaaslin) stop( print_help( pArgs ) ) } lsArgs$options$strTransform = tolower(lsArgs$options$strTransform) if(!lsArgs$options$strTransform %in% c("none","asinsqrt")) { logerror(paste("Received an invalid value for the transform/link argument, received '",lsArgs$options$strTransform,"'"), c_logrMaaslin) stop( print_help( pArgs ) ) } if(!lsArgs$options$strMultTestCorrection %in% c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY")) { logerror(paste("Received an invalid value for the multiple testing correction argument, received '",lsArgs$options$strMultTestCorrection,"'"), c_logrMaaslin) stop( print_help( pArgs ) ) } ### Necessary local import files ### Check to make sure the lib is in the expected place (where the script is) ### if not, then try the alternative lib location ### This will happen if, for instance the script is linked or ### on the path. # Get the first choice relative path initial.options <- commandArgs(trailingOnly = FALSE) script.name <- sub("--file=", "", initial.options[grep("--file=", initial.options)]) strDir = file.path( dirname( script.name ), "lib" ) # If this does not have the lib file then go for the alt lib if( !file.exists(strDir) ) { lsPotentialListLocations = dir( path = lsArgs$options$sAlternativeLibraryLocation, pattern = "lib", recursive = TRUE, include.dirs = TRUE) if( length( lsPotentialListLocations ) > 0 ) { sLibraryPath = file.path( "maaslin","src","lib" ) iLibraryPathLength = nchar( sLibraryPath ) for( strSearchDir in lsPotentialListLocations ) { # Looking for the path where the end of the path is equal to the library path given earlier # Also checks before hand to make sure the path is atleast as long as the library path so no errors occur if ( substring( strSearchDir, 1 + nchar( strSearchDir ) - iLibraryPathLength ) == sLibraryPath ) { strDir = file.path( lsArgs$options$sAlternativeLibraryLocation, strSearchDir ) break } } } } strSelf = basename( script.name ) for( strR in dir( strDir, pattern = "*.R$" ) ) { if( strR == strSelf ) {next} source( file.path( strDir, strR ) ) } # Get analysis modules afuncVariableAnalysis = funcGetAnalysisMethods(lsArgs$options$strModelSelection,lsArgs$options$strTransform,lsArgs$options$strMethod,lsArgs$options$fZeroInflated) # Set up parameters for variable selection lxParameters = list(dFreq=lsArgs$options$dSelectionFrequency, dPAlpha=lsArgs$options$dPenalizedAlpha) if((lsArgs$options$strMethod == "lm")||(lsArgs$options$strMethod == "univariate")) { lxParameters$sFamily = "gaussian" } else if(lsArgs$options$strMethod == "neg_binomial"){ lxParameters$sFamily = "binomial" } else if(lsArgs$options$strMethod == "quasi"){ lxParameters$sFamily = "poisson"} #Indicate start logdebug("Start MaAsLin", c_logrMaaslin) #Log commandline arguments logdebug("Commandline Arguments", c_logrMaaslin) logdebug(lsArgs, c_logrMaaslin) ### Output directory for the study based on the requested output file outputDirectory = dirname(strOutputTXT) ### Base name for the project based on the read.config name strBase <- sub("\\.[^.]*$", "", basename(strInputTSV)) ### Sources in the custom script ### If the custom script is not there then ### defaults are used and no custom scripts are ran funcSourceScript <- function(strFunctionPath) { #If is specified, set up the custom func clean variable #If the custom script is null then return if(is.null(strFunctionPath)){return(NULL)} #Check to make sure the file exists if(file.exists(strFunctionPath)) { #Read in the file source(strFunctionPath) } else { #Handle when the file does not exist stop(paste("MaAsLin Error: A custom data manipulation script was indicated but was not found at the file path: ",strFunctionPath,sep="")) } } #Read file inputFileData = funcReadMatrices(lsArgs$options$strInputConfig, strInputTSV, log=TRUE) if(is.null(inputFileData[[c_strMatrixMetadata]])) { names(inputFileData)[1] <- c_strMatrixMetadata } if(is.null(inputFileData[[c_strMatrixData]])) { names(inputFileData)[2] <- c_strMatrixData } #Metadata and bug names lsOriginalMetadataNames = names(inputFileData[[c_strMatrixMetadata]]) lsOriginalFeatureNames = names(inputFileData[[c_strMatrixData]]) #Dimensions of the datasets liMetaData = dim(inputFileData[[c_strMatrixMetadata]]) liData = dim(inputFileData[[c_strMatrixData]]) #Merge data files together frmeData = merge(inputFileData[[c_strMatrixMetadata]],inputFileData[[c_strMatrixData]],by.x=0,by.y=0) #Reset rownames row.names(frmeData) = frmeData[[1]] frmeData = frmeData[-1] #Write QC files only in certain modes of verbosity # Read in and merge files if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { # If the QC internal file does not exist, make strQCDir = file.path(outputDirectory,"QC") dir.create(strQCDir, showWarnings = FALSE) # Write metadata matrix before merge funcWriteMatrices(dataFrameList=list(Metadata = inputFileData[[c_strMatrixMetadata]]), saveFileList=c(file.path(strQCDir,"metadata.tsv")), configureFileName=c(file.path(strQCDir,"metadata.read.config")), acharDelimiter="\t") # Write data matrix before merge funcWriteMatrices(dataFrameList=list(Data = inputFileData[[c_strMatrixData]]), saveFileList=c(file.path(strQCDir,"data.tsv")), configureFileName=c(file.path(strQCDir,"data.read.config")), acharDelimiter="\t") #Record the data as it has been read funcWriteMatrices(dataFrameList=list(Merged = frmeData), saveFileList=c(file.path(strQCDir,"read-Merged.tsv")), configureFileName=c(file.path(strQCDir,"read-Merged.read.config")), acharDelimiter="\t") } #Data needed for the MaAsLin environment #List of lists (one entry per file) #Is contained by a container of itself #lslsData = list() #List lsData = c() #List of metadata indicies aiMetadata = c(1:liMetaData[2]) lsData$aiMetadata = aiMetadata #List of data indicies aiData = c(1:liData[2])+liMetaData[2] lsData$aiData = aiData #Add a list to hold qc metrics and counts lsData$lsQCCounts$aiDataInitial = aiData lsData$lsQCCounts$aiMetadataInitial = aiMetadata #Raw data lsData$frmeRaw = frmeData #Load script if it exists, stop on error funcProcess <- NULL if(!is.null(funcSourceScript(lsArgs$options$strInputR))){funcProcess <- get(c_strCustomProcessFunction)} #Clean the data and update the current data list to the cleaned data list funcTransformData = afuncVariableAnalysis[[c_iTransform]] lsQCCounts = list(aiDataCleaned = c(), aiMetadataCleaned = c()) lsRet = list(frmeData=frmeData, aiData=aiData, aiMetadata=aiMetadata, lsQCCounts=lsQCCounts, liNaIndices=c()) viNotTransformedDataIndices = c() if(!lsArgs$options$fNoQC) { c_logrMaaslin$info( "Running quality control." ) lsRet = funcClean( frmeData=frmeData, funcDataProcess=funcProcess, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=lsData$lsQCCounts, astrNoImpute=xNoImpute, dMinSamp = lsArgs$options$dMinSamp, dMinAbd = lsArgs$options$dMinAbd, dFence=lsArgs$options$dOutlierFence, funcTransform=funcTransformData, dPOutlier=lsArgs$options$dPOutlier) viNotTransformedDataIndices = lsRet$viNotTransformedData #If using a count based model make sure all are integer (QCing can add in numeric values during interpolation for example) if(lsArgs$options$strMethod %in% c_vCountBasedModels) { c_logrMaaslin$info( "Assuring the data matrix is integer." ) for(iDataIndex in aiData) { lsRet$frmeData[ iDataIndex ] = round( lsRet$frmeData[ iDataIndex ] ) } } } else { c_logrMaaslin$info( "Not running quality control, attempting transform." ) ### Need to do transform if the QC is not performed iTransformed = 0 for(iDataIndex in aiData) { if( ! funcTransformIncreasesOutliers( lsRet$frmeData[iDataIndex], funcTransformData ) ) { lsRet$frmeData[iDataIndex]=funcTransformData(lsRet$frmeData[iDataIndex]) iTransformed = iTransformed + 1 } else { viNotTransformedDataIndices = c(viNotTransformedDataIndices, iDataIndex) } } c_logrMaaslin$info(paste("Number of features transformed = ", iTransformed)) } logdebug("lsRet", c_logrMaaslin) logdebug(format(lsRet), c_logrMaaslin) #Update the variables after cleaning lsRet$frmeRaw = frmeData lsRet$lsQCCounts$aiDataCleaned = lsRet$aiData lsRet$lsQCCounts$aiMetadataCleaned = lsRet$aiMetadata #Add List of metadata string names astrMetadata = colnames(lsRet$frmeData)[lsRet$aiMetadata] lsRet$astrMetadata = astrMetadata # If plotting NA data reset the NA metadata indices to empty so they will not be excluded if(lsArgs$options$fPlotNA) { lsRet$liNaIndices = list() } #Write QC files only in certain modes of verbosity if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { #Record the data after cleaning funcWriteMatrices(dataFrameList=list(Cleaned = lsRet$frmeData[union(lsRet$aiMetadata,lsRet$aiData)]), saveFileList=c(file.path(strQCDir,"read_cleaned.tsv")), configureFileName=c(file.path(strQCDir,"read_cleaned.read.config")), acharDelimiter="\t") } #These variables will be used to count how many features get analysed lsRet$lsQCCounts$iBoosts = 0 lsRet$lsQCCounts$iBoostErrors = 0 lsRet$lsQCCounts$iNoTerms = 0 lsRet$lsQCCounts$iLms = 0 #Indicate if the residuals plots should occur fDoRPlot=TRUE #Should not occur for univariates if(lsArgs$options$strMethod %in% c("univariate")){ fDoRPlot=FALSE } #Run analysis alsRetBugs = funcBugs( frmeData=lsRet$frmeData, lsData=lsRet, aiMetadata=lsRet$aiMetadata, aiData=lsRet$aiData, aiNotTransformedData=viNotTransformedDataIndices, strData=strBase, dSig=lsArgs$options$dSignificanceLevel, fInvert=lsArgs$options$fInvert, strDirOut=outputDirectory, funcReg=afuncVariableAnalysis[[c_iSelection]], funcTransform=funcTransformData, funcUnTransform=afuncVariableAnalysis[[c_iUnTransform]], lsNonPenalizedPredictors=lsForcedParameters, funcAnalysis=afuncVariableAnalysis[[c_iAnalysis]], lsRandomCovariates=lsRandomCovariates, funcGetResults=afuncVariableAnalysis[[c_iResults]], fDoRPlot=fDoRPlot, fOmitLogFile=lsArgs$options$fOmitLogFile, fAllvAll=lsArgs$options$fAllvAll, liNaIndices=lsRet$liNaIndices, lxParameters=lxParameters, strTestingCorrection=lsArgs$options$strMultTestCorrection, fIsUnivariate=afuncVariableAnalysis[[c_iIsUnivariate]], fZeroInflated=lsArgs$options$fZeroInflated ) #Write QC files only in certain modes of verbosity if( c_logrMaaslin$level <= loglevels["DEBUG"] ) { funcWriteQCReport(strProcessFileName=file.path(strQCDir,"ProcessQC.txt"), lsQCData=alsRetBugs$lsQCCounts, liDataDim=liData, liMetadataDim=liMetaData) ### Write out the parameters used in the run unlink(file.path(strQCDir,"Run_Parameters.txt")) funcWrite("Parameters used in the MaAsLin run", file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Optional input read.config file=",lsArgs$options$strInputConfig), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Optional R file=",lsArgs$options$strInputR), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("FDR threshold for pdf generation=",lsArgs$options$dSignificanceLevel), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Minimum relative abundance=",lsArgs$options$dMinAbd), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Minimum percentage of samples with measurements=",lsArgs$options$dMinSamp), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("The fence used to define outliers with a quantile based analysis. If set to 0, the Grubbs test was used=",lsArgs$options$dOutlierFence), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Ignore if the Grubbs test was not used. The significance level used as a cut-off to define outliers=",lsArgs$options$dPOutlier), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("These covariates are treated as random covariates and not fixed covariates=",lsArgs$options$strRandomCovariates), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("The type of multiple testing correction used=",lsArgs$options$strMultTestCorrection), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Zero inflated inference models were turned on=",lsArgs$options$fZeroInflated), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Feature selection step=",lsArgs$options$strModelSelection), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Statistical inference step=",lsArgs$options$strMethod), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Numeric transform used=",lsArgs$options$strTransform), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Quality control was run=",!lsArgs$options$fNoQC), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("These covariates were forced into each model=",lsArgs$options$strForcedPredictors), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("These features' data were not changed by QC processes=",lsArgs$options$strNoImpute), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Output verbosity=",lsArgs$options$strVerbosity), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Log file was generated=",!lsArgs$options$fOmitLogFile), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Data plots were inverted=",lsArgs$options$fInvert), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Ignore unless boosting was used. The threshold for the rel.inf used to select features=",lsArgs$options$dSelectionFrequency), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("All verses all inference method was used=",lsArgs$options$fAllvAll), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Ignore unless penalized feature selection was used. Alpha to determine the type of penalty=",lsArgs$options$dPenalizedAlpha), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined metadata scale=",lsArgs$options$dBiplotMetadataScale), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined metadata used to color the plot=",lsArgs$options$strBiplotColor), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined metadata used to dictate the shapes of the plot markers=",lsArgs$options$strBiplotShapeBy), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined user requested features to plot=",lsArgs$options$strBiplotPlotFeatures), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined metadata used to rotate the plot ordination=",lsArgs$options$sRotateByMetadata), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined custom shapes for metadata=",lsArgs$options$sShapes), file.path(strQCDir,"Run_Parameters.txt")) funcWrite(paste("Biplot parameter, user defined number of bugs to plot =",lsArgs$options$iNumberBugs), file.path(strQCDir,"Run_Parameters.txt")) } ### Write summary table # Summarize output files based on a keyword and a significance threshold # Look for less than or equal to the threshold (appropriate for p-value and q-value type measurements) # DfSummary is sorted by the q.value when it is returned dfSummary = funcSummarizeDirectory(astrOutputDirectory=outputDirectory, strBaseName=strBase, astrSummaryFileName=file.path(outputDirectory,paste(strBase,c_sSummaryFileSuffix, sep="")), astrKeyword=c_strKeywordEvaluatedForInclusion, afSignificanceLevel=lsArgs$options$dSignificanceLevel) if( !is.null( dfSummary ) ) { ### Start biplot # Get metadata of interest and reduce to default size lsSigMetadata = unique(dfSummary[[1]]) if( is.null( lsArgs$options$iNumberMetadata ) ) { lsSigMetadata = lsSigMetadata[ 1:length( lsSigMetadata ) ] } else { lsSigMetadata = lsSigMetadata[ 1:min( length( lsSigMetadata ), max( lsArgs$options$iNumberMetadata, 1 ) ) ] } # Convert to indices (ordered numerically here) liSigMetadata = which( colnames( lsRet$frmeData ) %in% lsSigMetadata ) # Get bugs of interest and reduce to default size lsSigBugs = unique(dfSummary[[2]]) # Reduce the bugs to the right size if(lsArgs$options$iNumberBugs < 1) { lsSigBugs = c() } else if( is.null( lsArgs$options$iNumberBugs ) ) { lsSigBugs = lsSigBugs[ 1 : length( lsSigBugs ) ] } else { lsSigBugs = lsSigBugs[ 1 : lsArgs$options$iNumberBugs ] } # Set color by and shape by features if not given # Selects the continuous (for color) and factor (for shape) data with the most significant association if(is.null(lsArgs$options$strBiplotColor)||is.null(lsArgs$options$strBiplotShapeBy)) { for(sMetadata in lsSigMetadata) { if(is.factor(lsRet$frmeRaw[[sMetadata]])) { if(is.null(lsArgs$options$strBiplotShapeBy)) { lsArgs$options$strBiplotShapeBy = sMetadata if(!is.null(lsArgs$options$strBiplotColor)) { break } } } if(is.numeric(lsRet$frmeRaw[[sMetadata]])) { if(is.null(lsArgs$options$strBiplotColor)) { lsArgs$options$strBiplotColor = sMetadata if(!is.null(lsArgs$options$strBiplotShapeBy)) { break } } } } } #If a user defines a feature, make sure it is in the bugs/data indices if(!is.null(lsFeaturesToPlot) || !is.null(lsArgs$options$strBiplotColor) || !is.null(lsArgs$options$strBiplotShapeBy)) { lsCombinedFeaturesToPlot = unique(c(lsFeaturesToPlot,lsArgs$options$strBiplotColor,lsArgs$options$strBiplotShapeBy)) lsCombinedFeaturesToPlot = lsCombinedFeaturesToPlot[!is.null(lsCombinedFeaturesToPlot)] # If bugs to plot were given then do not use the significant bugs from the MaAsLin output which is default if(!is.null(lsFeaturesToPlot)) { lsSigBugs = c() liSigMetadata = c() } liSigMetadata = unique(c(liSigMetadata,which(colnames(lsRet$frmeData) %in% setdiff(lsCombinedFeaturesToPlot, lsOriginalFeatureNames)))) lsSigBugs = unique(c(lsSigBugs, intersect(lsCombinedFeaturesToPlot, lsOriginalFeatureNames))) } # Convert bug names and metadata names to comma delimited strings vsBugs = paste(lsSigBugs,sep=",",collapse=",") vsMetadata = paste(colnames(lsRet$frmeData)[liSigMetadata],sep=",",collapse=",") vsMetadataByLevel = c() # Possibly remove the NA levels depending on the preferences vsRemoveNA = c(NA, "NA", "na", "Na", "nA") if(!lsArgs$options$fPlotNA){ vsRemoveNA = c() } for(aiMetadataIndex in liSigMetadata) { lxCurMetadata = lsRet$frmeData[[aiMetadataIndex]] sCurName = names(lsRet$frmeData[aiMetadataIndex]) if(is.factor(lxCurMetadata)) { vsMetadataByLevel = c(vsMetadataByLevel,paste(sCurName, setdiff( levels(lxCurMetadata), vsRemoveNA),sep="_")) } else { vsMetadataByLevel = c(vsMetadataByLevel,sCurName) } } # If NAs should not be plotted, make them the background color # Unless explicitly asked to be plotted sPlotNAColor = "white" if(lsArgs$options$fInvert){sPlotNAColor = "black"} if(lsArgs$options$fPlotNA){sPlotNAColor = "grey"} sLastMetadata = lsOriginalMetadataNames[max(which(lsOriginalMetadataNames %in% names(lsRet$frmeData)))] # Plot biplot logdebug("PlotBiplot:Started") funcDoBiplot( sBugs = vsBugs, sMetadata = vsMetadataByLevel, sColorBy = lsArgs$options$strBiplotColor, sPlotNAColor = sPlotNAColor, sShapeBy = lsArgs$options$strBiplotShapeBy, sShapes = lsArgs$options$sShapes, sDefaultMarker = "16", sRotateByMetadata = lsArgs$options$sRotateByMetadata, dResizeArrow = lsArgs$options$dBiplotMetadataScale, sInputFileName = lsRet$frmeRaw, sLastMetadata = sLastMetadata, sOutputFileName = file.path(outputDirectory,paste(strBase,"-biplot.pdf",sep=""))) logdebug("PlotBiplot:Stopped") } } # This is the equivalent of __name__ == "__main__" in Python. # That is, if it's true we're being called as a command line script; # if it's false, we're being sourced or otherwise included, such as for # library or inlinedocs. if( identical( environment( ), globalenv( ) ) && !length( grep( "^source\\(", sys.calls( ) ) ) ) { main( pArgs ) }