Mercurial > repos > george-weingart > maaslin
view src/test-BoostGLM/test-BoostGLM.R @ 8:e9677425c6c3 default tip
Updated the structure of the libraries
author | george.weingart@gmail.com |
---|---|
date | Mon, 09 Feb 2015 12:17:40 -0500 |
parents | e0b5980139d9 |
children |
line wrap: on
line source
c_strDir <- file.path(getwd( ),"..") source(file.path(c_strDir,"lib","Constants.R")) source(file.path(c_strDir,"lib","Utility.R")) source(file.path(c_strDir,"lib","AnalysisModules.R")) # General setup covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, adCur= covY) iTaxon = 6 lsCov1 = list() lsCov1$name = "Covariate1" lsCov1$orig = "Covariate1" lsCov1$taxon = "adCur" lsCov1$data = covY lsCov1$factors = "Covariate1" lsCov1$metadata = covX1 vdCoef = c() vdCoef["(Intercept)"]=round(0.0345077486,5) vdCoef["Covariate1"]= round(0.0052097355,5) vdCoef["Covariate2"]= round(0.0005806568,5) vdCoef["Covariate32"]=round(-0.1333421874,5) vdCoef["Covariate33"]=round(-0.1072006419,5) vdCoef["Covariate42"]=round(0.0849198280,5) lsCov1$value = c(Covariate1=round(0.005209736,5)) lsCov1$std = round(0.0063781728,5) lsCov1$allCoefs = vdCoef lsCov2 = list() lsCov2$name = "Covariate2" lsCov2$orig = "Covariate2" lsCov2$taxon = "adCur" lsCov2$data = covY lsCov2$factors = "Covariate2" lsCov2$metadata = covX2 lsCov2$value = c(Covariate2=round(0.0005806568,5)) lsCov2$std = round(0.0006598436,5) lsCov2$allCoefs = vdCoef lsCov3 = list() lsCov3$name = "Covariate3" lsCov3$orig = "Covariate32" lsCov3$taxon = "adCur" lsCov3$data = covY lsCov3$factors = "Covariate3" lsCov3$metadata = covX3 lsCov3$value = c(Covariate32=round(-0.1333422,5)) lsCov3$std = round(0.0895657826,5) lsCov3$allCoefs = vdCoef lsCov4 = list() lsCov4$name = "Covariate3" lsCov4$orig = "Covariate33" lsCov4$taxon = "adCur" lsCov4$data = covY lsCov4$factors = "Covariate3" lsCov4$metadata = covX3 lsCov4$value = c(Covariate33=round(-0.1072006,5)) lsCov4$std = round(0.0792209541,5) lsCov4$allCoefs = vdCoef lsCov5 = list() lsCov5$name = "Covariate4" lsCov5$orig = "Covariate42" lsCov5$taxon = "adCur" lsCov5$data = covY lsCov5$factors = "Covariate4" lsCov5$metadata = covX4 lsCov5$value = c(Covariate42=round(0.08491983,5)) lsCov5$std = round(0.0701018621,5) lsCov5$allCoefs = vdCoef context("Test funcClean") context("Test funcBugHybrid") # multiple covariates, one call lm aiMetadata = c(1:5) aiData = c(iTaxon) dFreq = 0.5 / length( aiMetadata ) dSig = 0.25 dMinSamp = 0.1 adP = c() lsSig = list() funcReg = NA funcAnalysis = funcLM funcGetResult = funcGetLMResults lsData = list(frmeData=frmeTmp, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) lsData$astrMetadata = names(frmeTmp)[aiMetadata] adPExpected = round(c(0.4738687,0.4436566,0.4665972,0.5378693,0.3124672),5) QCExpected = list(iLms=numeric(0)) lsSigExpected = list() lsSigExpected[[1]] = lsCov1 lsSigExpected[[2]] = lsCov2 lsSigExpected[[3]] = lsCov3 lsSigExpected[[4]] = lsCov4 lsSigExpected[[5]] = lsCov5 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) receivedReturn$adP = round(receivedReturn$adP,5) vCoefs=receivedReturn$lsSig[[1]]$allCoefs vCoefs[1]=round(vCoefs[1],5) vCoefs[2]=round(vCoefs[2],5) vCoefs[3]=round(vCoefs[3],5) vCoefs[4]=round(vCoefs[4],5) vCoefs[5]=round(vCoefs[5],5) vCoefs[6]=round(vCoefs[6],5) receivedReturn$lsSig[[1]]$allCoefs=vCoefs receivedReturn$lsSig[[2]]$allCoefs=vCoefs receivedReturn$lsSig[[3]]$allCoefs=vCoefs receivedReturn$lsSig[[4]]$allCoefs=vCoefs receivedReturn$lsSig[[5]]$allCoefs=vCoefs vValue=c() vValue[receivedReturn$lsSig[[1]]$orig]=round(receivedReturn$lsSig[[1]]$value[[1]],5) receivedReturn$lsSig[[1]]$value=vValue vValue=c() vValue[receivedReturn$lsSig[[2]]$orig]=round(receivedReturn$lsSig[[2]]$value[[1]],5) receivedReturn$lsSig[[2]]$value=vValue vValue=c() vValue[receivedReturn$lsSig[[3]]$orig]=round(receivedReturn$lsSig[[3]]$value[[1]],5) receivedReturn$lsSig[[3]]$value=vValue vValue=c() vValue[receivedReturn$lsSig[[4]]$orig]=round(receivedReturn$lsSig[[4]]$value[[1]],5) receivedReturn$lsSig[[4]]$value=vValue vValue=c() vValue[receivedReturn$lsSig[[5]]$orig]=round(receivedReturn$lsSig[[5]]$value[[1]],5) receivedReturn$lsSig[[5]]$value=vValue receivedReturn$lsSig[[1]]$std=round(receivedReturn$lsSig[[1]]$std,5) receivedReturn$lsSig[[2]]$std=round(receivedReturn$lsSig[[2]]$std,5) receivedReturn$lsSig[[3]]$std=round(receivedReturn$lsSig[[3]]$std,5) receivedReturn$lsSig[[4]]$std=round(receivedReturn$lsSig[[4]]$std,5) receivedReturn$lsSig[[5]]$std=round(receivedReturn$lsSig[[5]]$std,5) test_that("funcBugHybrid works with the lm option with multiple covariates.",{expect_equal(receivedReturn,expectedReturn)}) # single covariate, single call lm aiMetadata = c(1) dFreq = 0.5 / length( aiMetadata ) lsData$astrMetadata = names(frmeTmp)[aiMetadata] adPExpected = round(c(0.1081731),5) QCExpected = list(iLms=numeric(0)) lsSigExpected = list() lsSigExpected[[1]] = lsCov1 lsSigExpected[[1]]$std=round(0.005278468,5) vdCoef = c() vdCoef["(Intercept)"]=round(-0.102410716,5) vdCoef["Covariate1"]= round(0.009718095,5) lsSigExpected[[1]]$allCoefs= vdCoef lsSigExpected[[1]]$value = c(Covariate1=round(0.009718095,5)) expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) receivedReturn$adP = round(receivedReturn$adP,5) vCoefs=receivedReturn$lsSig[[1]]$allCoefs vCoefs[1]=round(vCoefs[1],5) vCoefs[2]=round(vCoefs[2],5) receivedReturn$lsSig[[1]]$allCoefs=vCoefs vValue=c() vValue[receivedReturn$lsSig[[1]]$orig]=round(receivedReturn$lsSig[[1]]$value[[1]],5) receivedReturn$lsSig[[1]]$value=vValue receivedReturn$lsSig[[1]]$std=round(0.005278468,5) test_that("funcBugHybrid works with the lm option with 1 covariates.",{expect_equal(receivedReturn,expectedReturn)}) # multiple covariate, single call univariate funcReg = NA funcAnalysis = funcDoUnivariate funcGetResult = NA aiMetadata = c(3,1,2) dFreq = 0.5 / length( aiMetadata ) lsData$astrMetadata = names(frmeTmp)[aiMetadata] adPExpected = round(c(1.0,1.0,0.09679784,0.21252205),5) QCExpected = list(iLms=numeric(0)) lsSigExpected = list() lsCov1 = list() lsCov1$name = "Covariate3" lsCov1$orig = "Covariate32" lsCov1$taxon = "adCur" lsCov1$data = covY lsCov1$factors = "Covariate3" lsCov1$metadata = frmeTmp[["Covariate3"]] vdCoef = c(Covariate32=NA) lsCov1$value = vdCoef lsCov1$std = sd(frmeTmp[["Covariate3"]]) lsCov1$allCoefs = vdCoef lsCov2 = list() lsCov2$name = "Covariate3" lsCov2$orig = "Covariate33" lsCov2$taxon = "adCur" lsCov2$data = covY lsCov2$factors = "Covariate3" lsCov2$metadata = frmeTmp[["Covariate3"]] vdCoef = c(Covariate33=NA) lsCov2$value = vdCoef lsCov2$std = sd(frmeTmp[["Covariate3"]]) lsCov2$allCoefs = vdCoef lsCov3 = list() lsCov3$name = "Covariate1" lsCov3$orig = "Covariate1" lsCov3$taxon = "adCur" lsCov3$data = covY lsCov3$factors = "Covariate1" lsCov3$metadata = frmeTmp[["Covariate1"]] vdCoef = c(Covariate1=0.6) lsCov3$value = vdCoef lsCov3$std = sd(frmeTmp[["Covariate1"]]) lsCov3$allCoefs = vdCoef lsCov4 = list() lsCov4$name = "Covariate2" lsCov4$orig = "Covariate2" lsCov4$taxon = "adCur" lsCov4$data = covY lsCov4$factors = "Covariate2" lsCov4$metadata = frmeTmp[["Covariate2"]] vdCoef = c(Covariate2=0.46666667) lsCov4$value = vdCoef lsCov4$std = sd(frmeTmp[["Covariate2"]]) lsCov4$allCoefs = vdCoef lsSigExpected = list() lsSigExpected[[1]] = lsCov1 lsSigExpected[[2]] = lsCov2 lsSigExpected[[3]] = lsCov3 lsSigExpected[[4]] = lsCov4 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) receivedReturn$adP = round(receivedReturn$adP,5) test_that("funcBugHybrid works with the univariate option with 3 covariates.",{expect_equal(receivedReturn,expectedReturn)}) # single covariate, single call univariate funcReg = NA funcAnalysis = funcDoUnivariate funcGetResult = NA aiMetadata = c(1) dFreq = 0.5 / length( aiMetadata ) lsData$astrMetadata = names(frmeTmp)[aiMetadata] adPExpected = round(c(0.09679784),5) QCExpected = list(iLms=numeric(0)) lsSigExpected = list() lsSigExpected[[1]] = lsCov3 expectedReturn = list(adP=adPExpected,lsSig=lsSigExpected,lsQCCounts=QCExpected) receivedReturn = funcBugHybrid(iTaxon=iTaxon,frmeData=frmeTmp,lsData=lsData,aiMetadata=aiMetadata,dFreq=dFreq,dSig=dSig,dMinSamp=dMinSamp,adP=adP,lsSig=lsSig, strLog=NA,funcReg=funcReg,lsNonPenalizedPredictors=NULL,funcAnalysis=funcAnalysis,lsRandomCovariates=NULL,funcGetResult=funcGetResult) receivedReturn$adP = round(receivedReturn$adP,5) test_that("funcBugHybrid works with the univariate option with 1 covariates.",{expect_equal(receivedReturn,expectedReturn)}) context("Test funcBugs") #One LM run frmeData=frmeTmp aiMetadata=c(1) aiData=c(iTaxon) strData=NA dFreq= 0.5 / length( aiMetadata ) dSig=0.25 dMinSamp=0.1 strDirOut=NA funcReg=NA lsNonPenalizedPredictors=NULL lsRandomCovariates=NULL funcAnalysis=funcLM funcGetResults=funcGetLMResults fDoRPlot=FALSE lsData = list(frmeData=frmeData, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) lsData$astrMetadata = names(frmeTmp)[aiMetadata] QCExpected = list(iLms=numeric(0)) expectedReturn = list(aiReturnBugs=aiData,lsQCCounts=QCExpected) receivedReturn = funcBugs(frmeData=frmeData, lsData=lsData, aiMetadata=aiMetadata, aiData=aiData, strData=strData, dFreq=dFreq, dSig=dSig, dMinSamp=dMinSamp,strDirOut=strDirOut, funcReg=funcReg,lsNonPenalizedPredictors=lsNonPenalizedPredictors,funcAnalysis=funcAnalysis,lsRandomCovariates=lsRandomCovariates,funcGetResults=funcGetResults,fDoRPlot=fDoRPlot) test_that("funcBugs works with the lm option with 1 covariate.",{expect_equal(receivedReturn,expectedReturn)}) #multiple LM run frmeData=frmeTmp aiMetadata=c(1:5) aiData=c(iTaxon) strData=NA dFreq= 0.5 / length( aiMetadata ) dSig=0.25 dMinSamp=0.1 strDirOut=NA funcReg=NA lsNonPenalizedPredictors=NULL lsRandomCovariates=NULL funcAnalysis=funcLM funcGetResults=funcGetLMResults fDoRPlot=FALSE lsData = list(frmeData=frmeData, aiMetadata=aiMetadata, aiData=aiData, lsQCCounts=list()) lsData$astrMetadata = names(frmeTmp)[aiMetadata] QCExpected = list(iLms=numeric(0)) expectedReturn = list(aiReturnBugs=aiData,lsQCCounts=QCExpected) receivedReturn = funcBugs(frmeData=frmeData, lsData=lsData, aiMetadata=aiMetadata, aiData=aiData, strData=strData, dFreq=dFreq, dSig=dSig, dMinSamp=dMinSamp,strDirOut=strDirOut, funcReg=funcReg,lsNonPenalizedPredictors=lsNonPenalizedPredictors,funcAnalysis=funcAnalysis,lsRandomCovariates=lsRandomCovariates,funcGetResults=funcGetResults,fDoRPlot=fDoRPlot) print("START START") print(expectedReturn) print("RECEIVED") print(receivedReturn) print("STOP STOP") test_that("funcBugs works with the lm option with multiple covariates.",{expect_equal(receivedReturn,expectedReturn)})