Mercurial > repos > george-weingart > micropita
annotate MicroPITA.py @ 1:cd71e90abfab draft
Updated version that suppresses the future warnings option that was causing a problem
author | george-weingart |
---|---|
date | Sun, 08 Feb 2015 18:27:54 -0500 |
parents | 2f4f6f08c8c4 |
children |
rev | line source |
---|---|
0 | 1 #!/usr/bin/env python |
2 """ | |
3 Author: Timothy Tickle | |
4 Description: Class to Run analysis for the microPITA paper | |
5 """ | |
6 | |
7 ##################################################################################### | |
8 #Copyright (C) <2012> | |
9 # | |
10 #Permission is hereby granted, free of charge, to any person obtaining a copy of | |
11 #this software and associated documentation files (the "Software"), to deal in the | |
12 #Software without restriction, including without limitation the rights to use, copy, | |
13 #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, | |
14 #and to permit persons to whom the Software is furnished to do so, subject to | |
15 #the following conditions: | |
16 # | |
17 #The above copyright notice and this permission notice shall be included in all copies | |
18 #or substantial portions of the Software. | |
19 # | |
20 #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | |
21 #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A | |
22 #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
23 #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
24 #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
25 #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
26 ##################################################################################### | |
27 | |
28 __author__ = "Timothy Tickle" | |
29 __copyright__ = "Copyright 2012" | |
30 __credits__ = ["Timothy Tickle"] | |
31 __license__ = "MIT" | |
32 __maintainer__ = "Timothy Tickle" | |
33 __email__ = "ttickle@sph.harvard.edu" | |
34 __status__ = "Development" | |
35 | |
36 import sys | |
37 import argparse | |
1
cd71e90abfab
Updated version that suppresses the future warnings option that was causing a problem
george-weingart
parents:
0
diff
changeset
|
38 import warnings |
cd71e90abfab
Updated version that suppresses the future warnings option that was causing a problem
george-weingart
parents:
0
diff
changeset
|
39 warnings.simplefilter(action = "ignore", category = FutureWarning) |
0 | 40 from src.breadcrumbs.src.AbundanceTable import AbundanceTable |
41 from src.breadcrumbs.src.ConstantsBreadCrumbs import ConstantsBreadCrumbs | |
42 from src.breadcrumbs.src.Metric import Metric | |
43 from src.breadcrumbs.src.KMedoids import Kmedoids | |
44 from src.breadcrumbs.src.MLPYDistanceAdaptor import MLPYDistanceAdaptor | |
45 from src.breadcrumbs.src.SVM import SVM | |
46 from src.breadcrumbs.src.UtilityMath import UtilityMath | |
47 | |
48 from src.ConstantsMicropita import ConstantsMicropita | |
49 import csv | |
50 import logging | |
51 import math | |
52 import mlpy | |
53 import numpy as np | |
54 import operator | |
55 import os | |
56 import random | |
57 import scipy.cluster.hierarchy as hcluster | |
58 import scipy.spatial.distance | |
59 from types import * | |
60 | |
61 class MicroPITA: | |
62 """ | |
63 Selects samples from a first tier of a multi-tiered study to be used in a second tier. | |
64 Different methods can be used for selection. | |
65 The expected input is an abundance table (and potentially a text file of targeted features, | |
66 if using the targeted features option). Output is a list of samples exhibiting the | |
67 characteristics of interest. | |
68 """ | |
69 | |
70 #Constants | |
71 #Diversity metrics Alpha | |
72 c_strInverseSimpsonDiversity = Metric.c_strInvSimpsonDiversity | |
73 c_strChao1Diversity = Metric.c_strChao1Diversity | |
74 | |
75 #Diversity metrics Beta | |
76 c_strBrayCurtisDissimilarity = Metric.c_strBrayCurtisDissimilarity | |
77 | |
78 #Additive inverses of diversity metrics beta | |
79 c_strInvBrayCurtisDissimilarity = Metric.c_strInvBrayCurtisDissimilarity | |
80 | |
81 #Technique Names | |
82 ConstantsMicropita.c_strDiversity2 = ConstantsMicropita.c_strDiversity+"_C" | |
83 | |
84 #Targeted feature settings | |
85 c_strTargetedRanked = ConstantsMicropita.c_strTargetedRanked | |
86 c_strTargetedAbundance = ConstantsMicropita.c_strTargetedAbundance | |
87 | |
88 #Technique groupings | |
89 # c_lsDiversityMethods = [ConstantsMicropita.c_strDiversity,ConstantsMicropita.c_strDiversity2] | |
90 | |
91 #Converts ecology metrics into standardized method selection names | |
92 dictConvertAMetricDiversity = {c_strInverseSimpsonDiversity:ConstantsMicropita.c_strDiversity, c_strChao1Diversity:ConstantsMicropita.c_strDiversity2} | |
93 # dictConvertMicroPITAToAMetric = {ConstantsMicropita.c_strDiversity:c_strInverseSimpsonDiversity, ConstantsMicropita.c_strDiversity2:c_strChao1Diversity} | |
94 dictConvertBMetricToMethod = {c_strBrayCurtisDissimilarity:ConstantsMicropita.c_strRepresentative} | |
95 dictConvertInvBMetricToMethod = {c_strBrayCurtisDissimilarity:ConstantsMicropita.c_strExtreme} | |
96 | |
97 #Linkage used in the Hierarchical clustering | |
98 c_strHierarchicalClusterMethod = 'average' | |
99 | |
100 ####Group 1## Diversity | |
101 #Testing: Happy path Testing (8) | |
102 def funcGetTopRankedSamples(self, lldMatrix = None, lsSampleNames = None, iTopAmount = None): | |
103 """ | |
104 Given a list of lists of measurements, for each list the indices of the highest values are returned. If lsSamplesNames is given | |
105 it is treated as a list of string names that is in the order of the measurements in each list. Indices are returned or the sample | |
106 names associated with the indices. | |
107 | |
108 :param lldMatrix: List of lists [[value,value,value,value],[value,value,value,value]]. | |
109 :type: List of lists List of measurements. Each list is a different measurement. Each measurement in positionally related to a sample. | |
110 :param lsSampleNames: List of sample names positionally related (the same) to each list (Optional). | |
111 :type: List of strings List of strings. | |
112 :param iTopAmount: The amount of top measured samples (assumes the higher measurements are better). | |
113 :type: integer Integer amount of sample names/ indices to return. | |
114 :return List: List of samples to be selected. | |
115 """ | |
116 topRankListRet = [] | |
117 for rowMetrics in lldMatrix: | |
118 #Create 2 d array to hold value and index and sort | |
119 liIndexX = [rowMetrics,range(len(rowMetrics))] | |
120 liIndexX[1].sort(key = liIndexX[0].__getitem__,reverse = True) | |
121 | |
122 if lsSampleNames: | |
123 topRankListRet.append([lsSampleNames[iIndex] for iIndex in liIndexX[1][:iTopAmount]]) | |
124 else: | |
125 topRankListRet.append(liIndexX[1][:iTopAmount]) | |
126 | |
127 return topRankListRet | |
128 | |
129 ####Group 2## Representative Dissimilarity | |
130 #Testing: Happy path tested 1 | |
131 def funcGetCentralSamplesByKMedoids(self, npaMatrix=None, sMetric=None, lsSampleNames=None, iNumberSamplesReturned=0, istmBetaMatrix=None, istrmTree=None, istrmEnvr=None): | |
132 """ | |
133 Gets centroid samples by k-medoids clustering of a given matrix. | |
134 | |
135 :param npaMatrix: Numpy array where row=features and columns=samples | |
136 :type: Numpy array Abundance Data. | |
137 :param sMetric: String name of beta metric used as the distance metric. | |
138 :type: String String name of beta metric. | |
139 :param lsSampleNames: The names of the sample | |
140 :type: List List of strings | |
141 :param iNumberSamplesReturned: Number of samples to return, each will be a centroid of a sample. | |
142 :type: Integer Number of samples to return | |
143 :return List: List of selected samples. | |
144 :param istmBetaMatrix: File with beta-diversity matrix | |
145 :type: File stream or file path string | |
146 """ | |
147 | |
148 #Count of how many rows | |
149 sampleCount = npaMatrix.shape[0] | |
150 if iNumberSamplesReturned > sampleCount: | |
151 logging.error("MicroPITA.funcGetCentralSamplesByKMedoids:: There are not enough samples to return the amount of samples specified. Return sample count = "+str(iNumberSamplesReturned)+". Sample number = "+str(sampleCount)+".") | |
152 return False | |
153 | |
154 #If the cluster count is equal to the sample count return all samples | |
155 if sampleCount == iNumberSamplesReturned: | |
156 return list(lsSampleNames) | |
157 | |
158 #Get distance matrix | |
159 distanceMatrix=scipy.spatial.distance.squareform(Metric.funcReadMatrixFile(istmMatrixFile=istmBetaMatrix,lsSampleOrder=lsSampleNames)[0]) if istmBetaMatrix else Metric.funcGetBetaMetric(npadAbundancies=npaMatrix, sMetric=sMetric, istrmTree=istrmTree, istrmEnvr=istrmEnvr, lsSampleOrder=lsSampleNames) | |
160 if type(distanceMatrix) is BooleanType: | |
161 logging.error("MicroPITA.funcGetCentralSamplesByKMedoids:: Could not read in the supplied distance matrix, returning false.") | |
162 return False | |
163 | |
164 # Handle unifrac output | |
165 if sMetric in [Metric.c_strUnifracUnweighted,Metric.c_strUnifracWeighted]: | |
166 distanceMatrix = distanceMatrix[0] | |
167 | |
168 #Log distance matrix | |
169 logging.debug("MicroPITA.funcGetCentralSamplesByKMedoids:: Distance matrix for representative selection using metric="+str(sMetric)) | |
170 | |
171 distance = MLPYDistanceAdaptor(npaDistanceMatrix=distanceMatrix, fIsCondensedMatrix=True) | |
172 | |
173 #Create object to determine clusters/medoids | |
174 medoidsMaker = Kmedoids(k=iNumberSamplesReturned, dist=distance) | |
175 #medoidsData includes(1d numpy array, medoids indexes; | |
176 # 1d numpy array, non-medoids indexes; | |
177 # 1d numpy array, cluster membership for non-medoids; | |
178 # double, cost of configuration) | |
179 #npaMatrix is samples x rows | |
180 #Build a matrix of lists of indicies to pass to the distance matrix | |
181 lliIndicesMatrix = [[iIndexPosition] for iIndexPosition in xrange(0,len(npaMatrix))] | |
182 medoidsData = medoidsMaker.compute(np.array(lliIndicesMatrix)) | |
183 logging.debug("MicroPITA.funcGetCentralSamplesByKMedoids:: Results from the kmedoid method in representative selection:") | |
184 logging.debug(str(medoidsData)) | |
185 | |
186 #If returning the same amount of clusters and samples | |
187 #Return centroids | |
188 selectedIndexes = medoidsData[0] | |
189 return [lsSampleNames[selectedIndexes[index]] for index in xrange(0,iNumberSamplesReturned)] | |
190 | |
191 ####Group 3## Highest Dissimilarity | |
192 #Testing: Happy path tested | |
193 def funcSelectExtremeSamplesFromHClust(self, strBetaMetric, npaAbundanceMatrix, lsSampleNames, iSelectSampleCount, istmBetaMatrix=None, istrmTree=None, istrmEnvr=None): | |
194 """ | |
195 Select extreme samples from HClustering. | |
196 | |
197 :param strBetaMetric: The beta metric to use for distance matrix generation. | |
198 :type: String The name of the beta metric to use. | |
199 :param npaAbundanceMatrix: Numpy array where row=samples and columns=features. | |
200 :type: Numpy Array Abundance data. | |
201 :param lsSampleNames: The names of the sample. | |
202 :type: List List of strings. | |
203 :param iSelectSampleCount: Number of samples to select (return). | |
204 :type: Integer Integer number of samples returned. | |
205 :return Samples: List of samples. | |
206 :param istmBetaMatrix: File with beta-diversity matrix | |
207 :type: File stream or file path string | |
208 """ | |
209 | |
210 #If they want all the sample count, return all sample names | |
211 iSampleCount=len(npaAbundanceMatrix[:,0]) | |
212 if iSelectSampleCount==iSampleCount: | |
213 return lsSampleNames | |
214 | |
215 #Holds the samples to be returned | |
216 lsReturnSamplesRet = [] | |
217 | |
218 #Generate beta matrix | |
219 #Returns condensed matrix | |
220 tempDistanceMatrix = scipy.spatial.distance.squareform(Metric.funcReadMatrixFile(istmMatrixFile=istmBetaMatrix,lsSampleOrder=lsSampleNames)[0]) if istmBetaMatrix else Metric.funcGetBetaMetric(npadAbundancies=npaAbundanceMatrix, sMetric=strBetaMetric, istrmTree=istrmTree, istrmEnvr=istrmEnvr, lsSampleOrder=lsSampleNames, fAdditiveInverse = True) | |
221 | |
222 if strBetaMetric in [Metric.c_strUnifracUnweighted,Metric.c_strUnifracWeighted]: | |
223 tempDistanceMatrix = tempDistanceMatrix[0] | |
224 | |
225 if type(tempDistanceMatrix) is BooleanType: | |
226 logging.error("MicroPITA.funcSelectExtremeSamplesFromHClust:: Could not read in the supplied distance matrix, returning false.") | |
227 return False | |
228 | |
229 if istmBetaMatrix: | |
230 tempDistanceMatrix = 1-tempDistanceMatrix | |
231 | |
232 #Feed beta matrix to linkage to cluster | |
233 #Send condensed matrix | |
234 linkageMatrix = hcluster.linkage(tempDistanceMatrix, method=self.c_strHierarchicalClusterMethod) | |
235 | |
236 #Extract cluster information from dendrogram | |
237 #The linakge matrix is of the form | |
238 #[[int1 int2 doube int3],...] | |
239 #int1 and int1 are the paired samples indexed at 0 and up. | |
240 #each list is an entry for a branch that is number starting with the first | |
241 #list being sample count index + 1 | |
242 #each list is then named by an increment as they appear | |
243 #this means that if a number is in the list and is = sample count or greater it is not | |
244 #terminal and is instead a branch. | |
245 #This method just takes the lowest metric measurement (highest distance pairs/clusters) | |
246 #Works much better than the original technique | |
247 #get total number of samples | |
248 | |
249 iCurrentSelectCount = 0 | |
250 for row in linkageMatrix: | |
251 #Get nodes ofthe lowest pairing (so the furthest apart pair) | |
252 iNode1 = int(row[0]) | |
253 iNode2 = int(row[1]) | |
254 #Make sure the nodes are a terminal node (sample) and not a branch in the dendrogram | |
255 #The branching in the dendrogram will start at the number of samples and increment higher. | |
256 #Add each of the pair one at a time breaking when enough samples are selected. | |
257 if iNode1<iSampleCount: | |
258 lsReturnSamplesRet.append(lsSampleNames[iNode1]) | |
259 iCurrentSelectCount = iCurrentSelectCount + 1 | |
260 if iCurrentSelectCount == iSelectSampleCount: | |
261 break | |
262 if iNode2<iSampleCount: | |
263 lsReturnSamplesRet.append(lsSampleNames[iNode2]) | |
264 iCurrentSelectCount = iCurrentSelectCount + 1 | |
265 if iCurrentSelectCount == iSelectSampleCount: | |
266 break | |
267 | |
268 #Return selected samples | |
269 return lsReturnSamplesRet | |
270 | |
271 ####Group 4## Rank Average of user Defined Taxa | |
272 #Testing: Happy Path Tested | |
273 def funcGetAverageAbundanceSamples(self, abndTable, lsTargetedFeature, fRank=False): | |
274 """ | |
275 Averages feature abundance or ranked abundance. Expects a column 0 of taxa id that is skipped. | |
276 | |
277 :param abndTable: Abundance Table to analyse | |
278 :type: AbundanceTable Abundance Table | |
279 :param lsTargetedFeature: String names | |
280 :type: list list of string names of features (bugs) which are measured after ranking against the full sample | |
281 :param fRank: Indicates to rank the abundance before getting the average abundance of the features (default false) | |
282 :type: boolean Flag indicating ranking abundance before calculating average feature measurement (false= no ranking) | |
283 :return List of lists or boolean: List of lists or False on error. One internal list per sample indicating the sample, | |
284 feature average abundance or ranked abundance. Lists will already be sorted. | |
285 For not Ranked [[sample,average abundance of selected feature,1]] | |
286 For Ranked [[sample,average ranked abundance, average abundance of selected feature]] | |
287 Error Returns false | |
288 """ | |
289 | |
290 llAbundance = abndTable.funcGetAverageAbundancePerSample(lsTargetedFeature) | |
291 if not llAbundance: | |
292 logging.error("MicroPITA.funcGetAverageAbundanceSamples:: Could not get average abundance, returned false. Make sure the features (bugs) are spelled correctly and in the abundance table.") | |
293 return False | |
294 #Add a space for ranking if needed | |
295 #Not ranked will be [[sSample,average abundance,1]] | |
296 #(where 1 will not discriminant ties if used in later functions, so this generalizes) | |
297 #Ranked will be [[sSample, average rank, average abundance]] | |
298 llRetAbundance = [[llist[0],-1,llist[1]] for llist in llAbundance] | |
299 #Rank if needed | |
300 if fRank: | |
301 abndRanked = abndTable.funcRankAbundance() | |
302 if abndRanked == None: | |
303 logging.error("MicroPITA.funcGetAverageAbundanceSamples:: Could not rank the abundance table, returned false.") | |
304 return False | |
305 llRetRank = abndRanked.funcGetAverageAbundancePerSample(lsTargetedFeature) | |
306 if not llRetRank: | |
307 logging.error("MicroPITA.funcGetAverageAbundanceSamples:: Could not get average ranked abundance, returned false. Make sure the features (bugs) are spelled correctly and in the abundance table.") | |
308 return False | |
309 dictRanks = dict(llRetRank) | |
310 llRetAbundance = [[a[0],dictRanks[a[0]],a[2]] for a in llRetAbundance] | |
311 | |
312 #Sort first for ties and then for the main feature | |
313 if not fRank or ConstantsMicropita.c_fBreakRankTiesByDiversity: | |
314 llRetAbundance = sorted(llRetAbundance, key = lambda sampleData: sampleData[2], reverse = not fRank) | |
315 if fRank: | |
316 llRetAbundance = sorted(llRetAbundance, key = lambda sampleData: sampleData[1], reverse = not fRank) | |
317 return llRetAbundance | |
318 | |
319 #Testing: Happy Path Tested | |
320 def funcSelectTargetedTaxaSamples(self, abndMatrix, lsTargetedTaxa, iSampleSelectionCount, sMethod = ConstantsMicropita.lsTargetedFeatureMethodValues[0]): | |
321 """ | |
322 Selects samples with the highest ranks or abundance of targeted features. | |
323 If ranked, select the highest abundance for tie breaking | |
324 | |
325 :param abndMatrix: Abundance table to analyse | |
326 :type: AbundanceTable Abundance table | |
327 :param lsTargetedTaxa: List of features | |
328 :type: list list of strings | |
329 :param iSampleSelectionCount: Number of samples to select | |
330 :type: integer integer | |
331 :param sMethod: Method to select targeted features | |
332 :type: string String (Can be values found in ConstantsMicropita.lsTargetedFeatureMethodValues) | |
333 :return List of strings: List of sample names which were selected | |
334 List of strings Empty list is returned on an error. | |
335 """ | |
336 | |
337 #Check data | |
338 if(len(lsTargetedTaxa) < 1): | |
339 logging.error("MicroPITA.funcSelectTargetedTaxaSamples. Taxa defined selection was requested but no features were given.") | |
340 return [] | |
341 | |
342 lsTargetedSamples = self.funcGetAverageAbundanceSamples(abndTable=abndMatrix, lsTargetedFeature=lsTargetedTaxa, | |
343 fRank=sMethod.lower() == self.c_strTargetedRanked.lower()) | |
344 #If an error occured or the key word for the method was not recognized | |
345 if lsTargetedSamples == False: | |
346 logging.error("MicroPITA.funcSelectTargetedTaxaSamples:: Was not able to select for the features given. So targeted feature selection was performed. Check to make sure the features are spelled correctly and exist in the abundance file.") | |
347 return [] | |
348 | |
349 #Select from results | |
350 return [sSample[0] for sSample in lsTargetedSamples[:iSampleSelectionCount]] | |
351 | |
352 ####Group 5## Random | |
353 #Testing: Happy path Tested | |
354 def funcGetRandomSamples(self, lsSamples=None, iNumberOfSamplesToReturn=0): | |
355 """ | |
356 Returns random sample names of the number given. No replacement. | |
357 | |
358 :param lsSamples: List of sample names | |
359 :type: list list of strings | |
360 :param iNumberOfSamplesToReturn: Number of samples to select | |
361 :type: integer integer. | |
362 :return List: List of selected samples (strings). | |
363 """ | |
364 | |
365 #Input matrix sample count | |
366 sampleCount = len(lsSamples) | |
367 | |
368 #Return the full matrix if they ask for a return matrix where length == original | |
369 if(iNumberOfSamplesToReturn >= sampleCount): | |
370 return lsSamples | |
371 | |
372 #Get the random indices for the sample (without replacement) | |
373 liRandomIndices = random.sample(range(sampleCount), iNumberOfSamplesToReturn) | |
374 | |
375 #Create a boolean array of if indexes are to be included in the reduced array | |
376 return [sSample for iIndex, sSample in enumerate(lsSamples) if iIndex in liRandomIndices] | |
377 | |
378 #Happy path tested (case 3) | |
379 def funcGetAveragePopulation(self, abndTable, lfCompress): | |
380 """ | |
381 Get the average row per column in the abndtable. | |
382 | |
383 :param abndTable: AbundanceTable of data to be averaged | |
384 :type: AbudanceTable | |
385 :param lfCompress: List of boolean flags (false means to remove sample before averaging | |
386 :type: List of floats | |
387 :return List of doubles: | |
388 """ | |
389 if sum(lfCompress) == 0: | |
390 return [] | |
391 | |
392 #Get the average populations | |
393 lAverageRet = [] | |
394 | |
395 for sFeature in abndTable.funcGetAbundanceCopy(): | |
396 sFeature = list(sFeature)[1:] | |
397 sFeature=np.compress(lfCompress,sFeature,axis=0) | |
398 lAverageRet.append(sum(sFeature)/float(len(sFeature))) | |
399 return lAverageRet | |
400 | |
401 #Happy path tested (2 cases) | |
402 def funcGetDistanceFromAverage(self, abndTable,ldAverage,lsSamples,lfSelected): | |
403 """ | |
404 Given an abundance table and an average sample, this returns the distance of each sample | |
405 (measured using brays-curtis dissimilarity) from the average. | |
406 The distances are reduced by needing to be in the lsSamples and being a true in the lfSelected | |
407 (which is associated with the samples in the order of the samples in the abundance table; | |
408 use abundancetable.funcGetSampleNames() to see the order if needed). | |
409 | |
410 :param abndTable: Abundance table holding the data to be analyzed. | |
411 :type: AbundanceTable | |
412 :param ldAverage: Average population (Average features of the abundance table of samples) | |
413 :type: List of doubles which represent the average population | |
414 :param lsSamples: These are the only samples used in the analysis | |
415 :type: List of strings (sample ids) | |
416 :param lfSelected: Samples to be included in the analysis | |
417 :type: List of boolean (true means include) | |
418 :return: List of distances (doubles) | |
419 """ | |
420 #Get the distance from label 1 of all samples in label0 splitting into selected and not selected lists | |
421 ldSelectedDistances = [] | |
422 | |
423 for sSampleName in [sSample for iindex, sSample in enumerate(lsSamples) if lfSelected[iindex]]: | |
424 #Get the sample measurements | |
425 ldSelectedDistances.append(Metric.funcGetBrayCurtisDissimilarity(np.array([abndTable.funcGetSample(sSampleName),ldAverage]))[0]) | |
426 return ldSelectedDistances | |
427 | |
428 #Happy path tested (1 case) | |
429 def funcMeasureDistanceFromLabelToAverageOtherLabel(self, abndTable, lfGroupOfInterest, lfGroupOther): | |
430 """ | |
431 Get the distance of samples from one label from the average sample of not the label. | |
432 Note: This assumes 2 classes. | |
433 | |
434 :param abndTable: Table of data to work out of. | |
435 :type: Abundace Table | |
436 :param lfGroupOfInterest: Boolean indicator of the sample being in the first group. | |
437 :type: List of floats, true indicating an individual in the group of interest. | |
438 :param lfGroupOther: Boolean indicator of the sample being in the other group. | |
439 :type: List of floats, true indicating an individual in the | |
440 :return List of List of doubles: [list of tuples (string sample name,double distance) for the selected population, list of tuples for the not selected population] | |
441 """ | |
442 #Get all sample names | |
443 lsAllSamples = abndTable.funcGetSampleNames() | |
444 | |
445 #Get average populations | |
446 lAverageOther = self.funcGetAveragePopulation(abndTable=abndTable, lfCompress=lfGroupOther) | |
447 | |
448 #Get the distance from the average of the other label (label 1) | |
449 ldSelectedDistances = self.funcGetDistanceFromAverage(abndTable=abndTable, ldAverage=lAverageOther, | |
450 lsSamples=lsAllSamples, lfSelected=lfGroupOfInterest) | |
451 | |
452 return zip([lsAllSamples[iindex] for iindex, fGroup in enumerate(lfGroupOfInterest) if fGroup],ldSelectedDistances) | |
453 | |
454 #Happy path tested (1 test case) | |
455 def funcPerformDistanceSelection(self, abndTable, iSelectionCount, sLabel, sValueOfInterest): | |
456 """ | |
457 Given metadata, metadata of one value (sValueOfInterest) is measured from the average (centroid) value of another label group. | |
458 An iSelectionCount of samples is selected from the group of interest closest to and furthest from the centroid of the other group. | |
459 | |
460 :params abndTable: Abundance of measurements | |
461 :type: AbundanceTable | |
462 :params iSelectionCount: The number of samples selected per sample. | |
463 :type: Integer Integer greater than 0 | |
464 :params sLabel: ID of the metadata which is the supervised label | |
465 :type: String | |
466 :params sValueOfInterest: Metadata value in the sLabel metadta row of the abundance table which defines the group of interest. | |
467 :type: String found in the abundance table metadata row indicated by sLabel. | |
468 :return list list of tuples (samplename, distance) [[iSelectionCount of tuples closest to the other centroid], [iSelectionCount of tuples farthest from the other centroid], [all tuples of samples not selected]] | |
469 """ | |
470 | |
471 lsMetadata = abndTable.funcGetMetadata(sLabel) | |
472 #Other metadata values | |
473 lsUniqueOtherValues = list(set(lsMetadata)-set(sValueOfInterest)) | |
474 | |
475 #Get boolean indicator of values of interest | |
476 lfLabelsInterested = [sValueOfInterest == sValue for sValue in lsMetadata] | |
477 | |
478 #Get the distances of the items of interest from the other metadata values | |
479 dictDistanceAverages = {} | |
480 for sOtherLabel in lsUniqueOtherValues: | |
481 #Get boolean indicator of labels not of interest | |
482 lfLabelsOther = [sOtherLabel == sValue for sValue in lsMetadata] | |
483 | |
484 #Get the distances of data from two different groups to the average of the other | |
485 ldValueDistances = dict(self.funcMeasureDistanceFromLabelToAverageOtherLabel(abndTable, lfLabelsInterested, lfLabelsOther)) | |
486 | |
487 for sKey in ldValueDistances: | |
488 dictDistanceAverages[sKey] = ldValueDistances[sKey] + dictDistanceAverages[sKey] if sKey in dictDistanceAverages else ldValueDistances[sKey] | |
489 | |
490 #Finish average by dividing by length of lsUniqueOtherValues | |
491 ltpleAverageDistances = [(sKey, dictDistanceAverages[sKey]/float(len(lsUniqueOtherValues))) for sKey in dictDistanceAverages] | |
492 | |
493 #Sort to extract extremes | |
494 ltpleAverageDistances = sorted(ltpleAverageDistances,key=operator.itemgetter(1)) | |
495 | |
496 #Get the closest and farthest distances | |
497 ltupleDiscriminantSamples = ltpleAverageDistances[:iSelectionCount] | |
498 ltupleDistinctSamples = ltpleAverageDistances[iSelectionCount*-1:] | |
499 | |
500 #Remove the selected samples from the larger population of distances (better visualization) | |
501 ldSelected = [tpleSelected[0] for tpleSelected in ltupleDiscriminantSamples+ltupleDistinctSamples] | |
502 | |
503 #Return discriminant tuples, distinct tuples, other tuples | |
504 return [ltupleDiscriminantSamples, ltupleDistinctSamples, | |
505 [tplData for tplData in ltpleAverageDistances if tplData[0] not in ldSelected]] | |
506 | |
507 #Run the supervised method surrounding distance from centroids | |
508 #Happy path tested (3 test cases) | |
509 def funcRunSupervisedDistancesFromCentroids(self, abundanceTable, fRunDistinct, fRunDiscriminant, | |
510 xOutputSupFile, xPredictSupFile, strSupervisedMetadata, | |
511 iSampleSupSelectionCount, lsOriginalSampleNames, lsOriginalLabels, fAppendFiles = False): | |
512 """ | |
513 Runs supervised methods based on measuring distances of one label from the centroid of another. NAs are evaluated as theirown group. | |
514 | |
515 :param abundanceTable: AbundanceTable | |
516 :type: AbudanceTable Data to analyze | |
517 :param fRunDistinct: Run distinct selection method | |
518 :type: Boolean boolean (true runs method) | |
519 :param fRunDiscriminant: Run discriminant method | |
520 :type: Boolean boolean (true runs method) | |
521 :param xOutputSupFile: File output from supervised methods detailing data going into the method. | |
522 :type: String or FileStream | |
523 :param xPredictSupFile: File output from supervised methods distance results from supervised methods. | |
524 :type: String or FileStream | |
525 :param strSupervisedMetadata: The metadata that will be used to group samples. | |
526 :type: String | |
527 :param iSampleSupSelectionCount: Number of samples to select | |
528 :type: Integer int sample selection count | |
529 :param lsOriginalSampleNames: List of the sample names, order is important and should be preserved from the abundanceTable. | |
530 :type: List of samples | |
531 :param fAppendFiles: Indicates that output files already exist and appending is occuring. | |
532 :type: Boolean | |
533 :return Selected Samples: A dictionary of selected samples by selection ID | |
534 Dictionary {"Selection Method":["SampleID","SampleID"...]} | |
535 """ | |
536 #Get labels and run one label against many | |
537 lstrMetadata = abundanceTable.funcGetMetadata(strSupervisedMetadata) | |
538 dictlltpleDistanceMeasurements = {} | |
539 for sMetadataValue in set(lstrMetadata): | |
540 | |
541 #For now perform the selection here for the label of interest against the other labels | |
542 dictlltpleDistanceMeasurements.setdefault(sMetadataValue,[]).extend(self.funcPerformDistanceSelection(abndTable=abundanceTable, | |
543 iSelectionCount=iSampleSupSelectionCount, sLabel=strSupervisedMetadata, sValueOfInterest=sMetadataValue)) | |
544 | |
545 #Make expected output files for supervised methods | |
546 #1. Output file which is similar to an input file for SVMs | |
547 #2. Output file that is similar to the probabilitic output of a SVM (LibSVM) | |
548 #Manly for making output of supervised methods (Distance from Centroid) similar | |
549 #MicropitaVis needs some of these files | |
550 if xOutputSupFile: | |
551 if fAppendFiles: | |
552 SVM.funcUpdateSVMFileWithAbundanceTable(abndAbundanceTable=abundanceTable, xOutputSVMFile=xOutputSupFile, | |
553 lsOriginalLabels=lsOriginalLabels, lsSampleOrdering=lsOriginalSampleNames) | |
554 else: | |
555 SVM.funcConvertAbundanceTableToSVMFile(abndAbundanceTable=abundanceTable, xOutputSVMFile=xOutputSupFile, | |
556 sMetadataLabel=strSupervisedMetadata, lsOriginalLabels=lsOriginalLabels, lsSampleOrdering=lsOriginalSampleNames) | |
557 | |
558 #Will contain the samples selected to return | |
559 #One or more of the methods may be active so this is why I am extending instead of just returning the result of each method type | |
560 dictSelectedSamplesRet = dict() | |
561 for sKey, ltplDistances in dictlltpleDistanceMeasurements.items(): | |
562 if fRunDistinct: | |
563 dictSelectedSamplesRet.setdefault(ConstantsMicropita.c_strDistinct,[]).extend([ltple[0] for ltple in ltplDistances[1]]) | |
564 if fRunDiscriminant: | |
565 dictSelectedSamplesRet.setdefault(ConstantsMicropita.c_strDiscriminant,[]).extend([ltple[0] for ltple in ltplDistances[0]]) | |
566 | |
567 if xPredictSupFile: | |
568 dictFlattenedDistances = dict() | |
569 [dictFlattenedDistances.setdefault(sKey, []).append(tple) | |
570 for sKey, lltple in dictlltpleDistanceMeasurements.items() | |
571 for ltple in lltple for tple in ltple] | |
572 if fAppendFiles: | |
573 self._updatePredictFile(xPredictSupFile=xPredictSupFile, xInputLabelsFile=xOutputSupFile, | |
574 dictltpleDistanceMeasurements=dictFlattenedDistances, abundanceTable=abundanceTable, lsOriginalSampleNames=lsOriginalSampleNames) | |
575 else: | |
576 self._writeToPredictFile(xPredictSupFile=xPredictSupFile, xInputLabelsFile=xOutputSupFile, | |
577 dictltpleDistanceMeasurements=dictFlattenedDistances, abundanceTable=abundanceTable, lsOriginalSampleNames=lsOriginalSampleNames) | |
578 return dictSelectedSamplesRet | |
579 | |
580 #Two happy path test cases | |
581 def _updatePredictFile(self, xPredictSupFile, xInputLabelsFile, dictltpleDistanceMeasurements, abundanceTable, lsOriginalSampleNames): | |
582 """ | |
583 Manages updating the predict file. | |
584 | |
585 :param xPredictSupFile: File that has predictions (distances) from the supervised method. | |
586 :type: FileStream or String file path | |
587 :param xInputLabelsFile: File that as input to the supervised methods. | |
588 :type: FileStream or String file path | |
589 :param dictltpleDistanceMeasurements: | |
590 :type: Dictionary of lists of tuples {"labelgroup":[("SampleName",dDistance)...], "labelgroup":[("SampleName",dDistance)...]} | |
591 """ | |
592 | |
593 if not isinstance(xPredictSupFile, str): | |
594 xPredictSupFile.close() | |
595 xPredictSupFile = xPredictSupFile.name | |
596 csvr = open(xPredictSupFile,'r') | |
597 | |
598 f = csv.reader(csvr,delimiter=ConstantsBreadCrumbs.c_strBreadCrumbsSVMSpace) | |
599 lsHeader = f.next()[1:] | |
600 dictlltpleRead = dict([(sHeader,[]) for sHeader in lsHeader]) | |
601 | |
602 #Read data in | |
603 iSampleIndex = 0 | |
604 for sRow in f: | |
605 sLabel = sRow[0] | |
606 [dictlltpleRead[lsHeader[iDistanceIndex]].append((lsOriginalSampleNames[iSampleIndex],dDistance)) for iDistanceIndex, dDistance in enumerate(sRow[1:]) | |
607 if not dDistance == ConstantsMicropita.c_sEmptyPredictFileValue] | |
608 iSampleIndex += 1 | |
609 | |
610 #Combine dictltpleDistanceMeasurements with new data | |
611 #If they share a key then merge keeping parameter data | |
612 #If they do not share the key, keep the full data | |
613 dictNew = {} | |
614 for sKey in dictltpleDistanceMeasurements.keys(): | |
615 lsSamples = [tple[0] for tple in dictltpleDistanceMeasurements[sKey]] | |
616 dictNew[sKey] = dictltpleDistanceMeasurements[sKey]+[tple for tple in dictlltpleRead[sKey] if tple[0] not in lsSamples] if sKey in dictlltpleRead.keys() else dictltpleDistanceMeasurements[sKey] | |
617 for sKey in dictlltpleRead: | |
618 if sKey not in dictltpleDistanceMeasurements.keys(): | |
619 dictNew[sKey] = dictlltpleRead[sKey] | |
620 | |
621 #Call writer | |
622 self._writeToPredictFile(xPredictSupFile=xPredictSupFile, xInputLabelsFile=xInputLabelsFile, | |
623 dictltpleDistanceMeasurements=dictNew, abundanceTable=abundanceTable, | |
624 lsOriginalSampleNames=lsOriginalSampleNames, fFromUpdate=True) | |
625 | |
626 #2 happy path test cases | |
627 def _writeToPredictFile(self, xPredictSupFile, xInputLabelsFile, dictltpleDistanceMeasurements, abundanceTable, lsOriginalSampleNames, fFromUpdate=False): | |
628 """ | |
629 Write to the predict file. | |
630 | |
631 :param xPredictSupFile: File that has predictions (distances) from the supervised method. | |
632 :type: FileStream or String file path | |
633 :param xInputLabelsFile: File that as input to the supervised methods. | |
634 :type: FileStream or String file path | |
635 :param dictltpleDistanceMeasurements: | |
636 :type: Dictionary of lists of tuples {"labelgroup":[("SampleName",dDistance)...], "labelgroup":[("SampleName",dDistance)...]} | |
637 :param abundanceTable: An abundance table of the sample data. | |
638 :type: AbundanceTable | |
639 :param lsOriginalSampleNames: Used if the file is being updated as the sample names so that it may be passed in and consistent with other writing. | |
640 Otherwise will use the sample names from the abundance table. | |
641 :type: List of strings | |
642 :param fFromUpdate: Indicates if this is part of an update to the file or not. | |
643 :type: Boolean | |
644 """ | |
645 | |
646 xInputLabelsFileName = xInputLabelsFile | |
647 if not isinstance(xInputLabelsFile,str): | |
648 xInputLabelsFileName = xInputLabelsFile.name | |
649 f = csv.writer(open(xPredictSupFile,"w") if isinstance(xPredictSupFile, str) else xPredictSupFile,delimiter=ConstantsBreadCrumbs.c_strBreadCrumbsSVMSpace) | |
650 | |
651 lsAllSampleNames = abundanceTable.funcGetSampleNames() | |
652 lsLabels = SVM.funcReadLabelsFromFile(xSVMFile=xInputLabelsFileName, lsAllSampleNames= lsOriginalSampleNames if fFromUpdate else lsAllSampleNames, | |
653 isPredictFile=False) | |
654 dictLabels = dict([(sSample,sLabel) for sLabel in lsLabels.keys() for sSample in lsLabels[sLabel]]) | |
655 | |
656 #Dictionay keys will be used to order the predict file | |
657 lsMeasurementKeys = dictltpleDistanceMeasurements.keys() | |
658 #Make header | |
659 f.writerow(["labels"]+lsMeasurementKeys) | |
660 | |
661 #Reformat dictionary to make it easier to use | |
662 for sKey in dictltpleDistanceMeasurements: | |
663 dictltpleDistanceMeasurements[sKey] = dict([ltpl for ltpl in dictltpleDistanceMeasurements[sKey]]) | |
664 | |
665 for sSample in lsOriginalSampleNames: | |
666 #Make body of file | |
667 f.writerow([dictLabels.get(sSample,ConstantsMicropita.c_sEmptyPredictFileValue)]+ | |
668 [str(dictltpleDistanceMeasurements[sKey].get(sSample,ConstantsMicropita.c_sEmptyPredictFileValue)) | |
669 for sKey in lsMeasurementKeys]) | |
670 | |
671 def _funcRunNormalizeSensitiveMethods(self, abndData, iSampleSelectionCount, dictSelectedSamples, lsAlphaMetrics, lsBetaMetrics, lsInverseBetaMetrics, | |
672 fRunDiversity, fRunRepresentative, fRunExtreme, strAlphaMetadata=None, | |
673 istmBetaMatrix=None, istrmTree=None, istrmEnvr=None, fInvertDiversity=False): | |
674 """ | |
675 Manages running methods that are sensitive to normalization. This is called twice, once for the set of methods which should not be normalized and the other | |
676 for the set that should be normalized. | |
677 | |
678 :param abndData: Abundance table object holding the samples to be measured. | |
679 :type: AbundanceTable | |
680 :param iSampleSelectionCount The number of samples to select per method. | |
681 :type: Integer | |
682 :param dictSelectedSamples Will be added to as samples are selected {"Method:["strSelectedSampleID","strSelectedSampleID"...]}. | |
683 :type: Dictionary | |
684 :param lsAlphaMetrics: List of alpha metrics to use on alpha metric dependent assays (like highest diversity). | |
685 :type: List of strings | |
686 :param lsBetaMetrics: List of beta metrics to use on beta metric dependent assays (like most representative). | |
687 :type: List of strings | |
688 :param lsInverseBetaMetrics: List of inverse beta metrics to use on inverse beta metric dependent assays (like most dissimilar). | |
689 :type: List of strings | |
690 :param fRunDiversity: Run Diversity based methods (true indicates run). | |
691 :type: Boolean | |
692 :param fRunRepresentative: Run Representative based methods (true indicates run). | |
693 :type: Boolean | |
694 :param fRunExtreme: Run Extreme based methods (true indicates run). | |
695 :type: Boolean | |
696 :param istmBetaMatrix: File that has a precalculated beta matrix | |
697 :type: File stream or File path string | |
698 :return Selected Samples: Samples selected by methods. | |
699 Dictionary {"Selection Method":["SampleID","SampleID","SampleID",...]} | |
700 """ | |
701 | |
702 #Sample ids/names | |
703 lsSampleNames = abndData.funcGetSampleNames() | |
704 | |
705 #Generate alpha metrics and get most diverse | |
706 if fRunDiversity: | |
707 | |
708 #Get Alpha metrics matrix | |
709 internalAlphaMatrix = None | |
710 #Name of technique | |
711 strMethod = [strAlphaMetadata] if strAlphaMetadata else lsAlphaMetrics | |
712 | |
713 #If given an alpha-diversity metadata | |
714 if strAlphaMetadata: | |
715 internalAlphaMatrix = [[float(strNum) for strNum in abndData.funcGetMetadata(strAlphaMetadata)]] | |
716 else: | |
717 #Expects Observations (Taxa (row) x sample (column)) | |
718 #Returns [[metric1-sample1, metric1-sample2, metric1-sample3],[metric1-sample1, metric1-sample2, metric1-sample3]] | |
719 internalAlphaMatrix = Metric.funcBuildAlphaMetricsMatrix(npaSampleAbundance = abndData.funcGetAbundanceCopy() | |
720 if not abndData.funcIsSummed() | |
721 else abndData.funcGetFeatureAbundanceTable(abndData.funcGetTerminalNodes()).funcGetAbundanceCopy(), | |
722 lsSampleNames = lsSampleNames, lsDiversityMetricAlpha = lsAlphaMetrics) | |
723 | |
724 if internalAlphaMatrix: | |
725 #Invert measurments | |
726 if fInvertDiversity: | |
727 lldNewDiversity = [] | |
728 for lsLine in internalAlphaMatrix: | |
729 lldNewDiversity.append([1/max(dValue,ConstantsMicropita.c_smallNumber) for dValue in lsLine]) | |
730 internalAlphaMatrix = lldNewDiversity | |
731 #Get top ranked alpha diversity by most diverse | |
732 #Expects [[sample1,sample2,sample3...],[sample1,sample2,sample3..],...] | |
733 #Returns [[sampleName1, sampleName2, sampleNameN],[sampleName1, sampleName2, sampleNameN]] | |
734 mostDiverseAlphaSamplesIndexes = self.funcGetTopRankedSamples(lldMatrix=internalAlphaMatrix, lsSampleNames=lsSampleNames, iTopAmount=iSampleSelectionCount) | |
735 | |
736 #Add to results | |
737 for index in xrange(0,len(strMethod)): | |
738 strSelectionMethod = self.dictConvertAMetricDiversity.get(strMethod[index],ConstantsMicropita.c_strDiversity+"="+strMethod[index]) | |
739 dictSelectedSamples.setdefault(strSelectionMethod,[]).extend(mostDiverseAlphaSamplesIndexes[index]) | |
740 | |
741 logging.info("MicroPITA.funcRunNormalizeSensitiveMethods:: Selected Samples 1b") | |
742 logging.info(dictSelectedSamples) | |
743 | |
744 #Generate beta metrics and | |
745 if fRunRepresentative or fRunExtreme: | |
746 | |
747 #Abundance matrix transposed | |
748 npaTransposedAbundance = UtilityMath.funcTransposeDataMatrix(abndData.funcGetAbundanceCopy(), fRemoveAdornments=True) | |
749 | |
750 #Get center selection using clusters/tiling | |
751 #This will be for beta metrics in normalized space | |
752 if fRunRepresentative: | |
753 | |
754 if istmBetaMatrix: | |
755 #Get representative dissimilarity samples | |
756 medoidSamples=self.funcGetCentralSamplesByKMedoids(npaMatrix=npaTransposedAbundance, sMetric=ConstantsMicropita.c_custom, lsSampleNames=lsSampleNames, iNumberSamplesReturned=iSampleSelectionCount, istmBetaMatrix=istmBetaMatrix, istrmTree=istrmTree, istrmEnvr=istrmEnvr) | |
757 | |
758 if medoidSamples: | |
759 dictSelectedSamples.setdefault(ConstantsMicropita.c_strRepresentative+"="+ConstantsMicropita.c_custom,[]).extend(medoidSamples) | |
760 else: | |
761 logging.info("MicroPITA.funcRunNormalizeSensitiveMethods:: Performing representative selection on normalized data.") | |
762 for bMetric in lsBetaMetrics: | |
763 | |
764 #Get representative dissimilarity samples | |
765 medoidSamples=self.funcGetCentralSamplesByKMedoids(npaMatrix=npaTransposedAbundance, sMetric=bMetric, lsSampleNames=lsSampleNames, iNumberSamplesReturned=iSampleSelectionCount, istmBetaMatrix=istmBetaMatrix, istrmTree=istrmTree, istrmEnvr=istrmEnvr) | |
766 | |
767 if medoidSamples: | |
768 dictSelectedSamples.setdefault(self.dictConvertBMetricToMethod.get(bMetric,ConstantsMicropita.c_strRepresentative+"="+bMetric),[]).extend(medoidSamples) | |
769 | |
770 #Get extreme selection using clusters, tiling | |
771 if fRunExtreme: | |
772 logging.info("MicroPITA.funcRunNormalizeSensitiveMethods:: Performing extreme selection on normalized data.") | |
773 if istmBetaMatrix: | |
774 | |
775 #Samples for representative dissimilarity | |
776 #This involves inverting the distance metric, | |
777 #Taking the dendrogram level of where the number cluster == the number of samples to select | |
778 #Returning a repersentative sample from each cluster | |
779 extremeSamples = self.funcSelectExtremeSamplesFromHClust(strBetaMetric=ConstantsMicropita.c_custom, npaAbundanceMatrix=npaTransposedAbundance, lsSampleNames=lsSampleNames, iSelectSampleCount=iSampleSelectionCount, istmBetaMatrix=istmBetaMatrix, istrmTree=istrmTree, istrmEnvr=istrmEnvr) | |
780 | |
781 #Add selected samples | |
782 if extremeSamples: | |
783 dictSelectedSamples.setdefault(ConstantsMicropita.c_strExtreme+"="+ConstantsMicropita.c_custom,[]).extend(extremeSamples) | |
784 | |
785 else: | |
786 #Run KMedoids with inverse custom distance metric in normalized space | |
787 for bMetric in lsInverseBetaMetrics: | |
788 | |
789 #Samples for representative dissimilarity | |
790 #This involves inverting the distance metric, | |
791 #Taking the dendrogram level of where the number cluster == the number of samples to select | |
792 #Returning a repersentative sample from each cluster | |
793 extremeSamples = self.funcSelectExtremeSamplesFromHClust(strBetaMetric=bMetric, npaAbundanceMatrix=npaTransposedAbundance, lsSampleNames=lsSampleNames, iSelectSampleCount=iSampleSelectionCount, istmBetaMatrix=istmBetaMatrix, istrmTree=istrmTree, istrmEnvr=istrmEnvr) | |
794 | |
795 #Add selected samples | |
796 if extremeSamples: | |
797 dictSelectedSamples.setdefault(self.dictConvertInvBMetricToMethod.get(bMetric,ConstantsMicropita.c_strExtreme+"="+bMetric),[]).extend(extremeSamples) | |
798 | |
799 logging.info("MicroPITA.funcRunNormalizeSensitiveMethods:: Selected Samples 2,3b") | |
800 logging.info(dictSelectedSamples) | |
801 return dictSelectedSamples | |
802 | |
803 def funcRun(self, strIDName, strLastMetadataName, istmInput, | |
804 ostmInputPredictFile, ostmPredictFile, ostmCheckedFile, ostmOutput, | |
805 cDelimiter, cFeatureNameDelimiter, strFeatureSelection, | |
806 istmFeatures, iCount, lstrMethods, strLastRowMetadata = None, strLabel = None, strStratify = None, | |
807 strCustomAlpha = None, strCustomBeta = None, strAlphaMetadata = None, istmBetaMatrix = None, istrmTree = None, istrmEnvr = None, | |
808 iMinSeqs = ConstantsMicropita.c_liOccurenceFilter[0], iMinSamples = ConstantsMicropita.c_liOccurenceFilter[1], fInvertDiversity = False): | |
809 """ | |
810 Manages the selection of samples given different metrics. | |
811 | |
812 :param strIDName: Sample Id metadata row | |
813 :type: String | |
814 :param strLastMetadataName: The id of the metadata positioned last in the abundance table. | |
815 :type: String String metadata id. | |
816 :param istmInput: File to store input data to supervised methods. | |
817 :type: FileStream of String file path | |
818 :param ostmInputPredictFile: File to store distances from supervised methods. | |
819 :type: FileStream or String file path | |
820 :param ostmCheckedFile: File to store the AbundanceTable data after it is being checked. | |
821 :type: FileStream or String file path | |
822 :param ostmOutPut: File to store sample selection by methods of interest. | |
823 :type: FileStream or String file path | |
824 :param cDelimiter: Delimiter of abundance table. | |
825 :type: Character Char (default TAB). | |
826 :param cFeatureNameDelimiter: Delimiter of the name of features (for instance if they contain consensus lineages indicating clades). | |
827 :type: Character (default |). | |
828 :param stFeatureSelectionMethod: Which method to use to select features in a targeted manner (Using average ranked abundance or average abundance). | |
829 :type: String (specific values indicated in ConstantsMicropita.lsTargetedFeatureMethodValues). | |
830 :param istmFeatures: File which holds the features of interest if using targeted feature methodology. | |
831 :type: FileStream or String file path | |
832 :param iCount: Number of samples to select in each methods, supervised methods select this amount per label if possible. | |
833 :type: Integer integer. | |
834 :param lstrMethods: List of strings indicating selection techniques. | |
835 :type: List of string method names | |
836 :param strLabel: The metadata used for supervised labels. | |
837 :type: String | |
838 :param strStratify: The metadata used to stratify unsupervised data. | |
839 :type: String | |
840 :param strCustomAlpha: Custom alpha diversity metric | |
841 :type: String | |
842 :param strCustomBeta: Custom beta diversity metric | |
843 :type: String | |
844 :param strAlphaMetadata: Metadata id which is a diveristy metric to use in highest diversity sampling | |
845 :type: String | |
846 :param istmBetaMatrix: File containing precalculated beta-diversity matrix for representative sampling | |
847 :type: FileStream or String file path | |
848 :param istrmTree: File containing tree for phylogentic beta-diversity analysis | |
849 :type: FileStream or String file path | |
850 :param istrmEnvr: File containing environment for phylogentic beta-diversity analysis | |
851 :type: FileStream or String file path | |
852 :param iMinSeqs: Minimum sequence in the occurence filter which filters all features not with a minimum number of sequences in each of a minimum number of samples. | |
853 :type: Integer | |
854 :param iMinSamples: Minimum sample count for the occurence filter. | |
855 :type: Integer | |
856 :param fInvertDiversity: When true will invert diversity measurements before using. | |
857 :type: boolean | |
858 :return Selected Samples: Samples selected by methods. | |
859 Dictionary {"Selection Method":["SampleID","SampleID","SampleID",...]} | |
860 """ | |
861 | |
862 #Holds the top ranked samples from different metrics | |
863 #dict[metric name] = [samplename,samplename...] | |
864 selectedSamples = dict() | |
865 | |
866 #If a target feature file is given make sure that targeted feature is in the selection methods, if not add | |
867 if ConstantsMicropita.c_strFeature in lstrMethods: | |
868 if not istmFeatures: | |
869 logging.error("MicroPITA.funcRun:: Did not receive both the Targeted feature file and the feature selection method. MicroPITA did not run.") | |
870 return False | |
871 | |
872 #Diversity metrics to run | |
873 #Use custom metrics if specified | |
874 #Custom beta metrics set to normalized only, custom alpha metrics set to count only | |
875 diversityMetricsAlpha = [] if strCustomAlpha or strAlphaMetadata else [MicroPITA.c_strInverseSimpsonDiversity] | |
876 diversityMetricsBeta = [] if istmBetaMatrix else [strCustomBeta] if strCustomBeta else [MicroPITA.c_strBrayCurtisDissimilarity] | |
877 # inverseDiversityMetricsBeta = [MicroPITA.c_strInvBrayCurtisDissimilarity] | |
878 diversityMetricsAlphaNoNormalize = [strAlphaMetadata] if strAlphaMetadata else [strCustomAlpha] if strCustomAlpha else [] | |
879 diversityMetricsBetaNoNormalize = [] | |
880 # inverseDiversityMetricsBetaNoNormalize = [] | |
881 | |
882 #Targeted taxa | |
883 userDefinedTaxa = [] | |
884 | |
885 #Perform different flows flags | |
886 c_RUN_MAX_DIVERSITY_1 = ConstantsMicropita.c_strDiversity in lstrMethods | |
887 c_RUN_REPRESENTIVE_DISSIMILARITY_2 = ConstantsMicropita.c_strRepresentative in lstrMethods | |
888 c_RUN_MAX_DISSIMILARITY_3 = ConstantsMicropita.c_strExtreme in lstrMethods | |
889 c_RUN_RANK_AVERAGE_USER_4 = False | |
890 if ConstantsMicropita.c_strFeature in lstrMethods: | |
891 c_RUN_RANK_AVERAGE_USER_4 = True | |
892 if not istmFeatures: | |
893 logging.error("MicroPITA.funcRun:: No taxa file was given for taxa selection.") | |
894 return False | |
895 #Read in taxa list, break down to lines and filter out empty strings | |
896 userDefinedTaxa = filter(None,(s.strip( ) for s in istmFeatures.readlines())) | |
897 c_RUN_RANDOM_5 = ConstantsMicropita.c_strRandom in lstrMethods | |
898 c_RUN_DISTINCT = ConstantsMicropita.c_strDistinct in lstrMethods | |
899 c_RUN_DISCRIMINANT = ConstantsMicropita.c_strDiscriminant in lstrMethods | |
900 | |
901 #Read in abundance data | |
902 #Abundance is a structured array. Samples (column) by Taxa (rows) with the taxa id row included as the column index=0 | |
903 #Abundance table object to read in and manage data | |
904 totalAbundanceTable = AbundanceTable.funcMakeFromFile(xInputFile=istmInput, lOccurenceFilter = [iMinSeqs, iMinSamples], | |
905 cDelimiter=cDelimiter, sMetadataID=strIDName, sLastMetadataRow=strLastRowMetadata, | |
906 sLastMetadata=strLastMetadataName, cFeatureNameDelimiter=cFeatureNameDelimiter, xOutputFile=ostmCheckedFile) | |
907 if not totalAbundanceTable: | |
908 logging.error("MicroPITA.funcRun:: Could not read in the abundance table. Analysis was not performed."+ | |
909 " This often occurs when the Last Metadata is not specified correctly."+ | |
910 " Please check to make sure the Last Metadata selection is the row of the last metadata,"+ | |
911 " all values after this selection should be microbial measurements and should be numeric.") | |
912 return False | |
913 | |
914 lsOriginalLabels = SVM.funcMakeLabels(totalAbundanceTable.funcGetMetadata(strLabel)) if strLabel else strLabel | |
915 | |
916 dictTotalMetadata = totalAbundanceTable.funcGetMetadataCopy() | |
917 logging.debug("MicroPITA.funcRun:: Received metadata=" + str(dictTotalMetadata)) | |
918 #If there is only 1 unique value for the labels, do not run the Supervised methods | |
919 if strLabel and ( len(set(dictTotalMetadata.get(strLabel,[]))) < 2 ): | |
920 logging.error("The label " + strLabel + " did not have 2 or more values. Labels found=" + str(dictTotalMetadata.get(strLabel,[]))) | |
921 return False | |
922 | |
923 #Run unsupervised methods### | |
924 #Stratify the data if need be and drop the old data | |
925 lStratifiedAbundanceTables = totalAbundanceTable.funcStratifyByMetadata(strStratify) if strStratify else [totalAbundanceTable] | |
926 | |
927 #For each stratified abundance block or for the unstratfified abundance | |
928 #Run the unsupervised blocks | |
929 fAppendSupFiles = False | |
930 for stratAbundanceTable in lStratifiedAbundanceTables: | |
931 logging.info("MicroPITA.funcRun:: Running abundance block:"+stratAbundanceTable.funcGetName()) | |
932 | |
933 ###NOT SUMMED, NOT NORMALIZED | |
934 #Only perform if the data is not yet normalized | |
935 if not stratAbundanceTable.funcIsNormalized( ): | |
936 #Need to first work with unnormalized data | |
937 if c_RUN_MAX_DIVERSITY_1 or c_RUN_REPRESENTIVE_DISSIMILARITY_2 or c_RUN_MAX_DISSIMILARITY_3: | |
938 | |
939 self._funcRunNormalizeSensitiveMethods(abndData=stratAbundanceTable, iSampleSelectionCount=iCount, | |
940 dictSelectedSamples=selectedSamples, lsAlphaMetrics=diversityMetricsAlphaNoNormalize, | |
941 lsBetaMetrics=diversityMetricsBetaNoNormalize, | |
942 lsInverseBetaMetrics=diversityMetricsBetaNoNormalize, | |
943 fRunDiversity=c_RUN_MAX_DIVERSITY_1,fRunRepresentative=c_RUN_REPRESENTIVE_DISSIMILARITY_2, | |
944 fRunExtreme=c_RUN_MAX_DISSIMILARITY_3, strAlphaMetadata=strAlphaMetadata, | |
945 istrmTree=istrmTree, istrmEnvr=istrmEnvr, fInvertDiversity=fInvertDiversity) | |
946 | |
947 | |
948 #Generate selection by the rank average of user defined taxa | |
949 #Expects (Taxa (row) by Samples (column)) | |
950 #Expects a column 0 of taxa id that is skipped | |
951 #Returns [(sample name,average,rank)] | |
952 #SUMMED AND NORMALIZED | |
953 stratAbundanceTable.funcSumClades() | |
954 #Normalize data at this point | |
955 stratAbundanceTable.funcNormalize() | |
956 if c_RUN_RANK_AVERAGE_USER_4: | |
957 selectedSamples[ConstantsMicropita.c_strFeature] = self.funcSelectTargetedTaxaSamples(abndMatrix=stratAbundanceTable, | |
958 lsTargetedTaxa=userDefinedTaxa, iSampleSelectionCount=iCount, sMethod=strFeatureSelection) | |
959 logging.info("MicroPITA.funcRun:: Selected Samples Rank") | |
960 logging.info(selectedSamples) | |
961 | |
962 ###SUMMED AND NORMALIZED analysis block | |
963 #Diversity based metric will move reduce to terminal taxa as needed | |
964 if c_RUN_MAX_DIVERSITY_1 or c_RUN_REPRESENTIVE_DISSIMILARITY_2 or c_RUN_MAX_DISSIMILARITY_3: | |
965 | |
966 self._funcRunNormalizeSensitiveMethods(abndData=stratAbundanceTable, iSampleSelectionCount=iCount, | |
967 dictSelectedSamples=selectedSamples, lsAlphaMetrics=diversityMetricsAlpha, | |
968 lsBetaMetrics=diversityMetricsBeta, | |
969 lsInverseBetaMetrics=diversityMetricsBeta, | |
970 fRunDiversity=c_RUN_MAX_DIVERSITY_1,fRunRepresentative=c_RUN_REPRESENTIVE_DISSIMILARITY_2, | |
971 fRunExtreme=c_RUN_MAX_DISSIMILARITY_3, | |
972 istmBetaMatrix=istmBetaMatrix, istrmTree=istrmTree, istrmEnvr=istrmEnvr, fInvertDiversity=fInvertDiversity) | |
973 | |
974 #5::Select randomly | |
975 #Expects sampleNames = List of sample names [name, name, name...] | |
976 if(c_RUN_RANDOM_5): | |
977 #Select randomly from sample names | |
978 selectedSamples[ConstantsMicropita.c_strRandom] = self.funcGetRandomSamples(lsSamples=stratAbundanceTable.funcGetSampleNames(), iNumberOfSamplesToReturn=iCount) | |
979 logging.info("MicroPITA.funcRun:: Selected Samples Random") | |
980 logging.info(selectedSamples) | |
981 | |
982 #Perform supervised selection | |
983 if c_RUN_DISTINCT or c_RUN_DISCRIMINANT: | |
984 if strLabel: | |
985 dictSelectionRet = self.funcRunSupervisedDistancesFromCentroids(abundanceTable=stratAbundanceTable, | |
986 fRunDistinct=c_RUN_DISTINCT, fRunDiscriminant=c_RUN_DISCRIMINANT, | |
987 xOutputSupFile=ostmInputPredictFile,xPredictSupFile=ostmPredictFile, | |
988 strSupervisedMetadata=strLabel, iSampleSupSelectionCount=iCount, | |
989 lsOriginalSampleNames = totalAbundanceTable.funcGetSampleNames(), | |
990 lsOriginalLabels = lsOriginalLabels, | |
991 fAppendFiles=fAppendSupFiles) | |
992 | |
993 [selectedSamples.setdefault(sKey,[]).extend(lValue) for sKey,lValue in dictSelectionRet.items()] | |
994 | |
995 if not fAppendSupFiles: | |
996 fAppendSupFiles = True | |
997 logging.info("MicroPITA.funcRun:: Selected Samples Unsupervised") | |
998 logging.info(selectedSamples) | |
999 return selectedSamples | |
1000 | |
1001 #Testing: Happy path tested | |
1002 @staticmethod | |
1003 def funcWriteSelectionToFile(dictSelection,xOutputFilePath): | |
1004 """ | |
1005 Writes the selection of samples by method to an output file. | |
1006 | |
1007 :param dictSelection: The dictionary of selections by method to be written to a file. | |
1008 :type: Dictionary The dictionary of selections by method {"method":["sample selected","sample selected"...]} | |
1009 :param xOutputFilePath: FileStream or String path to file inwhich the dictionary is written. | |
1010 :type: String FileStream or String path to file | |
1011 """ | |
1012 | |
1013 if not dictSelection: | |
1014 return | |
1015 | |
1016 #Open file | |
1017 f = csv.writer(open(xOutputFilePath,"w") if isinstance(xOutputFilePath, str) else xOutputFilePath, delimiter=ConstantsMicropita.c_outputFileDelim ) | |
1018 | |
1019 #Create output content from dictionary | |
1020 for sKey in dictSelection: | |
1021 f.writerow([sKey]+dictSelection[sKey]) | |
1022 logging.debug("MicroPITA.funcRun:: Selected samples output to file:"+str(dictSelection[sKey])) | |
1023 | |
1024 #Testing: Happy Path tested | |
1025 @staticmethod | |
1026 def funcReadSelectionFileToDictionary(xInputFile): | |
1027 """ | |
1028 Reads in an output selection file from micropita and formats it into a dictionary. | |
1029 | |
1030 :param xInputFile: String path to file or file stream to read and translate into a dictionary. | |
1031 {"method":["sample selected","sample selected"...]} | |
1032 :type: FileStream or String Path to file | |
1033 :return Dictionary: Samples selected by methods. | |
1034 Dictionary {"Selection Method":["SampleID","SampleID","SampleID",...]} | |
1035 """ | |
1036 | |
1037 #Open file | |
1038 istmReader = csv.reader(open(xInputFile,'r') if isinstance(xInputFile, str) else xInputFile, delimiter = ConstantsMicropita.c_outputFileDelim) | |
1039 | |
1040 #Dictionary to hold selection data | |
1041 return dict([(lsLine[0], lsLine[1:]) for lsLine in istmReader]) | |
1042 | |
1043 #Set up arguments reader | |
1044 argp = argparse.ArgumentParser( prog = "MicroPITA.py", | |
1045 description = """Selects samples from abundance tables based on various selection schemes.""" ) | |
1046 | |
1047 args = argp.add_argument_group( "Common", "Commonly modified options" ) | |
1048 args.add_argument(ConstantsMicropita.c_strCountArgument,"--num", dest="iCount", metavar = "samples", default = 10, type = int, help = ConstantsMicropita.c_strCountHelp) | |
1049 args.add_argument("-m","--method", dest = "lstrMethods", metavar = "method", default = [], help = ConstantsMicropita.c_strSelectionTechniquesHelp, | |
1050 choices = ConstantsMicropita.c_lsAllMethods, action = "append") | |
1051 | |
1052 args = argp.add_argument_group( "Custom", "Selecting and inputing custom metrics" ) | |
1053 args.add_argument("-a","--alpha", dest = "strAlphaDiversity", metavar = "AlphaDiversity", default = None, help = ConstantsMicropita.c_strCustomAlphaDiversityHelp, choices = Metric.setAlphaDiversities) | |
1054 args.add_argument("-b","--beta", dest = "strBetaDiversity", metavar = "BetaDiversity", default = None, help = ConstantsMicropita.c_strCustomBetaDiversityHelp, choices = list(Metric.setBetaDiversities)+[Metric.c_strUnifracUnweighted,Metric.c_strUnifracWeighted]) | |
1055 args.add_argument("-q","--alphameta", dest = "strAlphaMetadata", metavar = "AlphaDiversityMetadata", default = None, help = ConstantsMicropita.c_strCustomAlphaDiversityMetadataHelp) | |
1056 args.add_argument("-x","--betamatrix", dest = "istmBetaMatrix", metavar = "BetaDiversityMatrix", default = None, help = ConstantsMicropita.c_strCustomBetaDiversityMatrixHelp) | |
1057 args.add_argument("-o","--tree", dest = "istrmTree", metavar = "PhylogeneticTree", default = None, help = ConstantsMicropita.c_strCustomPhylogeneticTreeHelp) | |
1058 args.add_argument("-i","--envr", dest = "istrmEnvr", metavar = "EnvironmentFile", default = None, help = ConstantsMicropita.c_strCustomEnvironmentFileHelp) | |
1059 args.add_argument("-f","--invertDiversity", dest = "fInvertDiversity", action="store_true", default = False, help = ConstantsMicropita.c_strInvertDiversityHelp) | |
1060 | |
1061 args = argp.add_argument_group( "Miscellaneous", "Row/column identifiers and feature targeting options" ) | |
1062 args.add_argument("-d",ConstantsMicropita.c_strIDNameArgument, dest="strIDName", metavar="sample_id", help= ConstantsMicropita.c_strIDNameHelp) | |
1063 args.add_argument("-l",ConstantsMicropita.c_strLastMetadataNameArgument, dest="strLastMetadataName", metavar = "metadata_id", default = None, | |
1064 help= ConstantsMicropita.c_strLastMetadataNameHelp) | |
1065 args.add_argument("-r",ConstantsMicropita.c_strTargetedFeatureMethodArgument, dest="strFeatureSelection", metavar="targeting_method", default=ConstantsMicropita.lsTargetedFeatureMethodValues[0], | |
1066 choices=ConstantsMicropita.lsTargetedFeatureMethodValues, help= ConstantsMicropita.c_strTargetedFeatureMethodHelp) | |
1067 args.add_argument("-t",ConstantsMicropita.c_strTargetedSelectionFileArgument, dest="istmFeatures", metavar="feature_file", type=argparse.FileType("rU"), help=ConstantsMicropita.c_strTargetedSelectionFileHelp) | |
1068 args.add_argument("-w",ConstantsMicropita.c_strFeatureMetadataArgument, dest="strLastFeatureMetadata", metavar="Last_Feature_Metadata", default=None, help=ConstantsMicropita.c_strFeatureMetadataHelp) | |
1069 | |
1070 args = argp.add_argument_group( "Data labeling", "Metadata IDs for strata and supervised label values" ) | |
1071 args.add_argument("-e",ConstantsMicropita.c_strSupervisedLabelArgument, dest="strLabel", metavar= "supervised_id", help=ConstantsMicropita.c_strSupervisedLabelHelp) | |
1072 args.add_argument("-s",ConstantsMicropita.c_strUnsupervisedStratifyMetadataArgument, dest="strUnsupervisedStratify", metavar="stratify_id", | |
1073 help= ConstantsMicropita.c_strUnsupervisedStratifyMetadataHelp) | |
1074 | |
1075 args = argp.add_argument_group( "File formatting", "Rarely modified file formatting options" ) | |
1076 args.add_argument("-j",ConstantsMicropita.c_strFileDelimiterArgument, dest="cFileDelimiter", metavar="column_delimiter", default="\t", help=ConstantsMicropita.c_strFileDelimiterHelp) | |
1077 args.add_argument("-k",ConstantsMicropita.c_strFeatureNameDelimiterArgument, dest="cFeatureNameDelimiter", metavar="taxonomy_delimiter", default="|", help=ConstantsMicropita.c_strFeatureNameDelimiterHelp) | |
1078 | |
1079 args = argp.add_argument_group( "Debugging", "Debugging options - modify at your own risk!" ) | |
1080 args.add_argument("-v",ConstantsMicropita.c_strLoggingArgument, dest="strLogLevel", metavar = "log_level", default="WARNING", | |
1081 choices=ConstantsMicropita.c_lsLoggingChoices, help= ConstantsMicropita.c_strLoggingHelp) | |
1082 args.add_argument("-c",ConstantsMicropita.c_strCheckedAbundanceFileArgument, dest="ostmCheckedFile", metavar = "output_qc", type = argparse.FileType("w"), help = ConstantsMicropita.c_strCheckedAbundanceFileHelp) | |
1083 args.add_argument("-g",ConstantsMicropita.c_strLoggingFileArgument, dest="ostmLoggingFile", metavar = "output_log", type = argparse.FileType("w"), help = ConstantsMicropita.c_strLoggingFileHelp) | |
1084 args.add_argument("-u",ConstantsMicropita.c_strSupervisedInputFile, dest="ostmInputPredictFile", metavar = "output_scaled", type = argparse.FileType("w"), help = ConstantsMicropita.c_strSupervisedInputFileHelp) | |
1085 args.add_argument("-p",ConstantsMicropita.c_strSupervisedPredictedFile, dest="ostmPredictFile", metavar = "output_labels", type = argparse.FileType("w"), help = ConstantsMicropita.c_strSupervisedPredictedFileHelp) | |
1086 | |
1087 argp.add_argument("istmInput", metavar = "input.pcl/biome", type = argparse.FileType("rU"), help = ConstantsMicropita.c_strAbundanceFileHelp, | |
1088 default = sys.stdin) | |
1089 argp.add_argument("ostmOutput", metavar = "output.txt", type = argparse.FileType("w"), help = ConstantsMicropita.c_strGenericOutputDataFileHelp, | |
1090 default = sys.stdout) | |
1091 | |
1092 __doc__ = "::\n\n\t" + argp.format_help( ).replace( "\n", "\n\t" ) + __doc__ | |
1093 | |
1094 def _main( ): | |
1095 args = argp.parse_args( ) | |
1096 | |
1097 #Set up logger | |
1098 iLogLevel = getattr(logging, args.strLogLevel.upper(), None) | |
1099 logging.basicConfig(stream = args.ostmLoggingFile if args.ostmLoggingFile else sys.stderr, filemode = 'w', level=iLogLevel) | |
1100 | |
1101 #Run micropita | |
1102 logging.info("MicroPITA:: Start microPITA") | |
1103 microPITA = MicroPITA() | |
1104 | |
1105 #Argparse will append to the default but will not remove the default so I do this here | |
1106 if not len(args.lstrMethods): | |
1107 args.lstrMethods = [ConstantsMicropita.c_strRepresentative] | |
1108 | |
1109 dictSelectedSamples = microPITA.funcRun( | |
1110 strIDName = args.strIDName, | |
1111 strLastMetadataName = args.strLastMetadataName, | |
1112 istmInput = args.istmInput, | |
1113 ostmInputPredictFile = args.ostmInputPredictFile, | |
1114 ostmPredictFile = args.ostmPredictFile, | |
1115 ostmCheckedFile = args.ostmCheckedFile, | |
1116 ostmOutput = args.ostmOutput, | |
1117 cDelimiter = args.cFileDelimiter, | |
1118 cFeatureNameDelimiter = args.cFeatureNameDelimiter, | |
1119 istmFeatures = args.istmFeatures, | |
1120 strFeatureSelection = args.strFeatureSelection, | |
1121 iCount = args.iCount, | |
1122 strLastRowMetadata = args.strLastFeatureMetadata, | |
1123 strLabel = args.strLabel, | |
1124 strStratify = args.strUnsupervisedStratify, | |
1125 strCustomAlpha = args.strAlphaDiversity, | |
1126 strCustomBeta = args.strBetaDiversity, | |
1127 strAlphaMetadata = args.strAlphaMetadata, | |
1128 istmBetaMatrix = args.istmBetaMatrix, | |
1129 istrmTree = args.istrmTree, | |
1130 istrmEnvr = args.istrmEnvr, | |
1131 lstrMethods = args.lstrMethods, | |
1132 fInvertDiversity = args.fInvertDiversity | |
1133 ) | |
1134 | |
1135 if not dictSelectedSamples: | |
1136 logging.error("MicroPITA:: Error, did not get a result from analysis.") | |
1137 return -1 | |
1138 logging.info("End microPITA") | |
1139 | |
1140 #Log output for debugging | |
1141 logging.debug("MicroPITA:: Returned the following samples:"+str(dictSelectedSamples)) | |
1142 | |
1143 #Write selection to file | |
1144 microPITA.funcWriteSelectionToFile(dictSelection=dictSelectedSamples, xOutputFilePath=args.ostmOutput) | |
1145 | |
1146 if __name__ == "__main__": | |
1147 _main( ) |