6
|
1 import itertools
|
|
2 import pandas as pd
|
|
3 from math import pi
|
|
4 import numpy as np
|
|
5 import matplotlib.pyplot as plt
|
|
6 import math
|
|
7 import logomaker as lm
|
|
8 from fpdf import FPDF, fpdf
|
|
9 import glob
|
|
10
|
|
11 ###############################################################################################################################################################################
|
|
12 def pie_non_temp(merge_con,merge_non_con,merge_tre,merge_non_tre,c_unmap,t_unmap,c_unmap_counts,t_unmap_counts,group_name1,group_name2):
|
|
13
|
|
14 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con]
|
|
15 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre]
|
|
16 c_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_con]
|
|
17 t_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_tre]
|
|
18
|
|
19 c_templ = 0
|
|
20 c_tem_counts = 0
|
|
21 c_mature = 0
|
|
22 c_mat_counts = 0
|
|
23 t_templ = 0
|
|
24 t_tem_counts = 0
|
|
25 t_mature = 0
|
|
26 t_mat_counts = 0
|
|
27
|
|
28 c_non = len(c_non_samples)
|
|
29 c_non_counts = sum(x[2] for x in c_non_samples)
|
|
30 t_non = len(t_non_samples)
|
|
31 t_non_counts = sum(x[2] for x in t_non_samples)
|
|
32
|
|
33 c_unmap = c_unmap - c_non
|
|
34 t_unmap = c_unmap - t_non
|
|
35
|
|
36 c_unmap_counts=c_unmap_counts - c_non_counts
|
|
37 t_unmap_counts=t_unmap_counts - t_non_counts
|
|
38
|
|
39
|
|
40 for x in c_samples:
|
|
41
|
|
42 if "/" not in x[0]:
|
|
43 if len(x[0].split("_"))==2:
|
|
44 c_mature+=1
|
|
45 c_mat_counts += x[2]
|
|
46 else:
|
|
47 c_templ+=1
|
|
48 c_tem_counts += x[2]
|
|
49 else:
|
|
50 f=0
|
|
51 for y in x[0].split("/"):
|
|
52 if len(y.split("_"))==2:
|
|
53 c_mature+=1
|
|
54 c_mat_counts += x[2]
|
|
55 f=1
|
|
56 break
|
|
57 if f==0:
|
|
58 c_templ+=1
|
|
59 c_tem_counts += x[2]
|
|
60
|
|
61 for x in t_samples:
|
|
62
|
|
63 if "/" not in x[0]:
|
|
64 if len(x[0].split("_"))==2:
|
|
65 t_mature+=1
|
|
66 t_mat_counts += x[2]
|
|
67 else:
|
|
68 t_templ+=1
|
|
69 t_tem_counts += x[2]
|
|
70 else:
|
|
71 f=0
|
|
72 for y in x[0].split("/"):
|
|
73 if len(y.split("_"))==2:
|
|
74 t_mature+=1
|
|
75 t_mat_counts += x[2]
|
|
76 f=1
|
|
77 break
|
|
78 if f==0:
|
|
79 t_templ+=1
|
|
80 t_tem_counts += x[2]
|
|
81
|
|
82 fig = plt.figure(figsize=(7,5))
|
|
83
|
|
84 labels = 'miRNA RefSeq','Template', 'Unassigned' ,'Non-template'
|
|
85 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts,c_non_counts]
|
|
86 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']
|
|
87 # Plot
|
|
88 ax1 = plt.subplot2grid((1,2),(0,0))
|
|
89 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8)
|
|
90 [x.set_fontsize(8) for x in texts]
|
|
91 plt.title(group_name1 + ' Group (reads)',fontsize=12)
|
|
92
|
|
93 labels = 'miRNA RefSeq','Template', 'Unassigned','non-template'
|
|
94 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts, t_non_counts]
|
|
95 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']
|
|
96 # Plot
|
|
97 ax2 = plt.subplot2grid((1,2),(0,1))
|
|
98 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8)
|
|
99 [x.set_fontsize(8) for x in texts]
|
|
100 plt.title(group_name2 + ' Group (reads)', fontsize=12)
|
|
101 plt.savefig('pie_non.png',dpi=300)
|
|
102
|
|
103 ####################################################################################################################################################################################################################
|
|
104
|
|
105 def pie_temp(merge_con,c_unmap,c_unmap_counts,merge_tre,t_unmap,t_unmap_counts,group_name1,group_name2):
|
|
106
|
|
107 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con]
|
|
108 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre]
|
|
109
|
|
110 c_templ = 0
|
|
111 c_tem_counts = 0
|
|
112 c_mature = 0
|
|
113 c_mat_counts = 0
|
|
114 t_templ = 0
|
|
115 t_tem_counts = 0
|
|
116 t_mature = 0
|
|
117 t_mat_counts = 0
|
|
118
|
|
119 for x in c_samples:
|
|
120
|
|
121 if "/" not in x[0]:
|
|
122 if len(x[0].split("_"))==2:
|
|
123 c_mature+=1
|
|
124 c_mat_counts += x[2]
|
|
125 else:
|
|
126 c_templ+=1
|
|
127 c_tem_counts += x[2]
|
|
128 else:
|
|
129 f=0
|
|
130 for y in x[0].split("/"):
|
|
131 if len(y.split("_"))==2:
|
|
132 c_mature+=1
|
|
133 c_mat_counts += x[2]
|
|
134 f=1
|
|
135 break
|
|
136 if f==0:
|
|
137 c_templ+=1
|
|
138 c_tem_counts += x[2]
|
|
139
|
|
140 for x in t_samples:
|
|
141
|
|
142 if "/" not in x[0]:
|
|
143 if len(x[0].split("_"))==2:
|
|
144 t_mature+=1
|
|
145 t_mat_counts += x[2]
|
|
146 else:
|
|
147 t_templ+=1
|
|
148 t_tem_counts += x[2]
|
|
149 else:
|
|
150 f=0
|
|
151 for y in x[0].split("/"):
|
|
152 if len(y.split("_"))==2:
|
|
153 t_mature+=1
|
|
154 t_mat_counts += x[2]
|
|
155 f=1
|
|
156 break
|
|
157 if f==0:
|
|
158 t_templ+=1
|
|
159 t_tem_counts += x[2]
|
|
160
|
|
161
|
|
162 fig = plt.figure()
|
|
163 labels = 'miRNA RefSeq','Template', 'Unassigned'
|
|
164 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts]
|
|
165 colors = ['gold', 'yellowgreen', 'lightskyblue']
|
|
166 explode = (0.2, 0.05, 0.1)
|
|
167 # Plot
|
|
168 ax1 = plt.subplot2grid((1,2),(0,0))
|
|
169 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8)
|
|
170 [x.set_fontsize(8) for x in texts]
|
|
171 plt.title(group_name1 + ' group (reads)', fontsize=12)
|
|
172 labels = 'miRNA RefSeq','Template', 'Unassigned'
|
|
173 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts]
|
|
174 colors = ['gold', 'yellowgreen', 'lightskyblue']
|
|
175 explode = (0.2, 0.05, 0.1)
|
|
176 # Plot
|
|
177 ax2 = plt.subplot2grid((1,2),(0,1))
|
|
178 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8)
|
|
179 [x.set_fontsize(8) for x in texts]
|
|
180 plt.title(group_name2 + ' group (reads)',fontsize = 12)
|
|
181 plt.savefig('pie_tem.png',dpi=300)
|
|
182
|
|
183 ###################################################################################################################################################################################################################
|
|
184
|
|
185 def make_spider(merge_con,merge_tre,group_name1,group_name2):
|
|
186
|
|
187 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con]
|
|
188 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre]
|
|
189
|
|
190 c_5 = 0
|
|
191 c_5_counts = 0
|
|
192 c_3 = 0
|
|
193 c_3_counts = 0
|
|
194 c_both =0
|
|
195 c_both_counts=0
|
|
196 c_mature = 0
|
|
197 c_mat_counts = 0
|
|
198 c_exception=0
|
|
199 c_exception_counts=0
|
|
200
|
|
201
|
|
202 t_5 = 0
|
|
203 t_5_counts = 0
|
|
204 t_3 = 0
|
|
205 t_3_counts = 0
|
|
206 t_both = 0
|
|
207 t_both_counts = 0
|
|
208 t_mature = 0
|
|
209 t_mat_counts = 0
|
|
210 t_exception = 0
|
|
211 t_exception_counts=0
|
|
212
|
|
213 for x in c_samples:
|
|
214
|
|
215 if "/" not in x[0]:
|
|
216 if len(x[0].split("_"))==2:
|
|
217 c_mature+=1
|
|
218 c_mat_counts += x[2]
|
|
219 elif 0 == int(x[0].split("_")[3]):
|
|
220 c_5+=1
|
|
221 c_5_counts += x[2]
|
|
222 elif 0 == int(x[0].split("_")[4]):
|
|
223 c_3+=1
|
|
224 c_3_counts += x[2]
|
|
225 else:
|
|
226 c_both+=1
|
|
227 c_both_counts+=x[2]
|
|
228
|
|
229 else:
|
|
230 f=0
|
|
231 for y in x[0].split("/"):
|
|
232 if len(y.split("_"))==2:
|
|
233 c_mature+=1
|
|
234 c_mat_counts += x[2]
|
|
235 f=1
|
|
236 break
|
|
237 if f==0:
|
|
238 part=x[0].split("/")[0].split("_")[-2]+"_"+x[0].split("/")[0].split("_")[-1]
|
|
239 num=0
|
|
240 for y in x[0].split("/"):
|
|
241 if y.split("_")[-2]+"_"+y.split("_")[-1]==part:
|
|
242 num+=1
|
|
243 if num==len(x[0].split("/")):
|
|
244
|
|
245 if 0 == int(x[0].split("/")[0].split("_")[3]):
|
|
246 c_5+=1
|
|
247 c_5_counts += x[2]
|
|
248 elif 0 == int(x[0].split("/")[0].split("_")[4]):
|
|
249 c_3+=1
|
|
250 c_3_counts += x[2]
|
|
251 else:
|
|
252 c_both+=1
|
|
253 c_both_counts+=x[2]
|
|
254 else:
|
|
255 c_exception+=1
|
|
256 c_exception_counts += x[2]
|
|
257
|
|
258
|
|
259 for x in t_samples:
|
|
260
|
|
261 if "/" not in x[0]:
|
|
262 if len(x[0].split("_"))==2:
|
|
263 t_mature+=1
|
|
264 t_mat_counts += x[2]
|
|
265 elif 0 == int(x[0].split("_")[3]):
|
|
266 t_5+=1
|
|
267 t_5_counts += x[2]
|
|
268 elif 0 == int(x[0].split("_")[4]):
|
|
269 t_3+=1
|
|
270 t_3_counts += x[2]
|
|
271 else:
|
|
272 t_both+=1
|
|
273 t_both_counts+=x[2]
|
|
274
|
|
275 else:
|
|
276 f=0
|
|
277 for y in x[0].split("/"):
|
|
278 if len(y.split("_"))==2:
|
|
279 t_mature+=1
|
|
280 t_mat_counts += x[2]
|
|
281 f=1
|
|
282 break
|
|
283 if f==0:
|
|
284 part=x[0].split("/")[0].split("_")[-2]+"_"+x[0].split("/")[0].split("_")[-1]
|
|
285 num=0
|
|
286 for y in x[0].split("/"):
|
|
287 if y.split("_")[-2]+"_"+y.split("_")[-1]==part:
|
|
288 num+=1
|
|
289 if num==len(x[0].split("/")):
|
|
290
|
|
291 if 0 == int(x[0].split("/")[0].split("_")[3]):
|
|
292 t_5+=1
|
|
293 t_5_counts += x[2]
|
|
294 elif 0 == int(x[0].split("/")[0].split("_")[4]):
|
|
295 t_3+=1
|
|
296 t_3_counts += x[2]
|
|
297 else:
|
|
298 t_both+=1
|
|
299 t_both_counts+=x[2]
|
|
300 else:
|
|
301 t_exception+=1
|
|
302 t_exception_counts += x[2]
|
|
303
|
|
304
|
|
305 c_all = c_5+c_3+c_both+c_mature+c_exception
|
|
306 c_all_counts = c_5_counts + c_3_counts + c_both_counts + c_mat_counts + c_exception_counts
|
|
307
|
|
308 t_all = t_5+t_3+t_both+t_mature + t_exception
|
|
309 t_all_counts = t_5_counts + t_3_counts + t_both_counts + t_mat_counts + t_exception_counts
|
|
310
|
|
311 c_5 = round(c_5/c_all*100,2)
|
|
312 c_3 = round(c_3/c_all*100,2)
|
|
313 c_both = round(c_both/c_all*100,2)
|
|
314 c_mature = round(c_mature/c_all*100,2)
|
|
315 c_exception = round(c_exception/c_all*100,2)
|
|
316
|
|
317 c_5_counts = round(c_5_counts/c_all_counts*100,2)
|
|
318 c_3_counts = round(c_3_counts/c_all_counts*100,2)
|
|
319 c_both_counts = round(c_both_counts/c_all_counts*100,2)
|
|
320 c_mat_counts = round(c_mat_counts/c_all_counts*100,2)
|
|
321 c_exception_counts = round(c_exception_counts/c_all_counts*100,2)
|
|
322
|
|
323 t_5 = round(t_5/t_all*100,2)
|
|
324 t_3 = round(t_3/t_all*100,2)
|
|
325 t_both = round(t_both/t_all*100,2)
|
|
326 t_mature = round(t_mature/t_all*100,2)
|
|
327 t_exception = round(t_exception/t_all*100,2)
|
|
328
|
|
329 t_5_counts = round(t_5_counts/t_all_counts*100,2)
|
|
330 t_3_counts = round(t_3_counts/t_all_counts*100,2)
|
|
331 t_both_counts = round(t_both_counts/t_all_counts*100,2)
|
|
332 t_mat_counts = round(t_mat_counts/t_all_counts*100,2)
|
|
333 t_exception_counts = round(t_exception_counts/t_all_counts*100,2)
|
|
334
|
|
335 radar_max = max(c_5, c_3, c_both,c_mature,c_exception,t_5,t_3,t_both,t_mature,t_exception)
|
|
336 radar_max_counts = max(c_5_counts,c_3_counts,c_both_counts,c_mat_counts,c_exception_counts,t_5_counts,t_3_counts,t_both_counts,t_mat_counts,t_exception_counts)
|
|
337
|
|
338 df=pd.DataFrame({
|
|
339 'group':[group_name1,group_name2],
|
|
340 """5'3'-isomiRs""":[c_both,t_both],
|
|
341 """3'-isomiRs""":[c_3,t_3],
|
|
342 'RefSeq miRNA':[c_mature,t_mature],
|
|
343 """5'-isomiRs""":[c_5,t_5],
|
|
344 'Others*':[c_exception,t_exception]})
|
|
345
|
|
346 df1=pd.DataFrame({
|
|
347 'group':[group_name1,group_name2],
|
|
348 """5'-3'-isomiRs""":[c_both_counts,t_both_counts],
|
|
349 """3'-isomiRs""":[c_3_counts,t_3_counts],
|
|
350 'RefSeq miRNA':[c_mat_counts,t_mat_counts],
|
|
351 """5'-isomiRs""":[c_5_counts,t_5_counts],
|
|
352 'Others*':[c_exception_counts,t_exception_counts]})
|
|
353
|
|
354 spider_last(df,radar_max,1,group_name1,group_name2)
|
|
355 spider_last(df1,radar_max_counts,2,group_name1,group_name2)
|
|
356
|
|
357
|
|
358 ##############################################################################################################################################################################################################
|
|
359
|
|
360 def spider_last(df,radar_max,flag,group_name1,group_name2):
|
|
361 # ------- PART 1: Create background
|
|
362 fig = plt.figure()
|
|
363 # number of variable
|
|
364 categories=list(df)[1:]
|
|
365 N = len(categories)
|
|
366
|
|
367 # What will be the angle of each axis in the plot? (we divide the plot / number of variable)
|
|
368 angles = [n / float(N) * 2 * pi for n in range(N)]
|
|
369 angles += angles[:1]
|
|
370
|
|
371 # Initialise the spider plot
|
|
372 ax = plt.subplot(111, polar=True)
|
|
373
|
|
374 # If you want the first axis to be on top:
|
|
375 ax.set_theta_offset(pi/2)
|
|
376 ax.set_theta_direction(-1)
|
|
377
|
|
378 # Draw one axe per variable + add labels labels yet
|
|
379 plt.xticks(angles[:-1], categories, fontsize=11)
|
|
380
|
|
381 # Draw ylabels
|
|
382 radar_max=round(radar_max+radar_max*0.1)
|
|
383 mul=len(str(radar_max))-1
|
|
384 maxi=int(math.ceil(radar_max / pow(10,mul))) * pow(10,mul)
|
|
385 sep = round(maxi/4)
|
|
386 plt.yticks([sep, 2*sep, 3*sep, 4*sep, 5*sep], [str(sep)+'%', str(2*sep)+'%', str(3*sep)+'%', str(4*sep)+'%', str(5*sep)+'%'], color="grey", size=10)
|
|
387 plt.ylim(0, maxi)
|
|
388
|
|
389 # ------- PART 2: Add plots
|
|
390
|
|
391 # Plot each individual = each line of the data
|
|
392 # I don't do a loop, because plotting more than 3 groups makes the chart unreadable
|
|
393
|
|
394 # Ind1
|
|
395 values=df.loc[0].drop('group').values.flatten().tolist()
|
|
396 values += values[:1]
|
|
397 ax.plot(angles, values,'-o', linewidth=1, linestyle='solid', label=group_name1)
|
|
398 ax.fill(angles, values, 'b', alpha=0.1)
|
|
399
|
|
400 # Ind2
|
|
401 values=df.loc[1].drop('group').values.flatten().tolist()
|
|
402 values += values[:1]
|
|
403 ax.plot(angles, values, '-o' ,linewidth=1, linestyle='solid', label=group_name2)
|
|
404 ax.fill(angles, values, 'r', alpha=0.1)
|
|
405
|
|
406 # Add legend
|
|
407 if flag==1:
|
|
408 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1))
|
|
409 plt.savefig('spider_non_red.png',dpi=300)
|
|
410 else:
|
|
411 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1))
|
|
412 plt.savefig('spider_red.png',dpi=300)
|
|
413
|
|
414 #############################################################################################################################################################################################################
|
|
415
|
|
416 def hist_red(samples,flag,group):
|
|
417
|
|
418 lengths=[]
|
|
419 cat=[]
|
|
420 total_reads=0
|
|
421 seq=[]
|
|
422
|
|
423 if flag == "c":
|
|
424 title = "Length Distribution of "+group+" group (Redudant reads)"
|
|
425 if flag == "t":
|
|
426 title = "Length Distribution of "+group+" group (Redudant reads)"
|
|
427
|
|
428 for i in samples:
|
|
429 for x in i:
|
|
430 lengths.append(x[3])
|
|
431 if x[1]=="0":
|
|
432 seq.append([x[3],x[0].split("-")[1],"Mapped"])
|
|
433 cat.append("Mapped")
|
|
434 if x[1] == "4":
|
|
435 seq.append([x[3],x[0].split("-")[1],"Unassigned"])
|
|
436 cat.append("Unassigned")
|
|
437
|
|
438 uni_len=list(set(lengths))
|
|
439 uni_len=[x for x in uni_len if x<=35]
|
|
440 low=min(lengths)
|
|
441 up=max(lengths)
|
|
442 seq.sort()
|
|
443 uni_seq=list(seq for seq,_ in itertools.groupby(seq))
|
|
444 dim=up-low
|
|
445
|
|
446 if dim>20:
|
|
447 s=5
|
|
448 else:
|
|
449 s=8
|
|
450
|
|
451 total_reads+=sum([int(x[1]) for x in uni_seq])
|
|
452
|
|
453 map_reads=[]
|
|
454 unmap_reads=[]
|
|
455 length=[]
|
|
456 for y in uni_len:
|
|
457 map_temp=0
|
|
458 unmap_temp=0
|
|
459 for x in uni_seq:
|
|
460 if x[0]==y and x[2]=="Mapped":
|
|
461 map_temp+=int(x[1])
|
|
462 if x[0]==y and x[2]=="Unassigned":
|
|
463 unmap_temp+=int(x[1])
|
|
464 if y<=35:
|
|
465 length.append(y)
|
|
466 map_reads.append(round(map_temp/total_reads*100,2))
|
|
467 unmap_reads.append(round(unmap_temp/total_reads*100,2))
|
|
468
|
|
469 ylim=max([sum(x) for x in zip(unmap_reads, map_reads)])
|
|
470 ylim=ylim+ylim*20/100
|
|
471 fig, ax = plt.subplots()
|
|
472 width=0.8
|
|
473 ax.bar(length, unmap_reads, width, label='Unassigned')
|
|
474 h=ax.bar(length, map_reads, width, bottom=unmap_reads, label='Mapped')
|
|
475 plt.xticks(np.arange(length[0], length[-1]+1, 1))
|
|
476 plt.yticks(np.arange(0, ylim, 5))
|
|
477 plt.xlabel('Length (nt)',fontsize=14)
|
|
478 plt.ylabel('Percentage',fontsize=14)
|
|
479 plt.title(title,fontsize=14)
|
|
480 ax.legend()
|
|
481 plt.ylim([0, ylim])
|
|
482 ax.grid(axis='y',linewidth=0.2)
|
|
483
|
|
484 if flag=='c':
|
|
485 plt.savefig('c_hist_red.png',dpi=300)
|
|
486
|
|
487 if flag=='t':
|
|
488 plt.savefig('t_hist_red.png',dpi=300)
|
|
489
|
|
490 ##############################################################################################################################################################################################################################################
|
|
491
|
|
492 def logo_seq_red(merge, flag, group):
|
|
493
|
|
494 if flag=="c":
|
|
495 titlos = group + " group (Redundant)"
|
|
496 file_logo = "c_logo.png"
|
|
497 file_bar = "c_bar.png"
|
|
498 if flag=="t":
|
|
499 titlos = group + " group (Redundant)"
|
|
500 file_logo = "t_logo.png"
|
|
501 file_bar = "t_bar.png"
|
|
502
|
|
503 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge]
|
|
504
|
|
505 A=[0]*3
|
|
506 C=[0]*3
|
|
507 G=[0]*3
|
|
508 T=[0]*3
|
|
509 total_reads=0
|
|
510
|
|
511 for y in c_samples:
|
|
512 if "/" in y[0]:
|
|
513 length=[]
|
|
514 for x in y[0].split("/"):
|
|
515 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]])
|
|
516
|
|
517 best=min(length)
|
|
518 total_reads+=best[2]
|
|
519 for i in range(3):
|
|
520 if i<len(best[1]):
|
|
521 if best[1][i] == "A":
|
|
522 A[i]+=best[2]
|
|
523 elif best[1][i] == "C":
|
|
524 C[i]+=best[2]
|
|
525 elif best[1][i] == "G":
|
|
526 G[i]+=best[2]
|
|
527 else:
|
|
528 T[i]+=best[2]
|
|
529 else:
|
|
530 total_reads+=y[2]
|
|
531 for i in range(3):
|
|
532 if i<len(y[0].split("_")[-1]):
|
|
533 if y[0].split("_")[-1][i] == "A":
|
|
534 A[i]+=(y[2])
|
|
535 elif y[0].split("_")[-1][i] == "C":
|
|
536 C[i]+=(y[2])
|
|
537 elif y[0].split("_")[-1][i] == "G":
|
|
538 G[i]+=(y[2])
|
|
539 else:
|
|
540 T[i]+=y[2]
|
|
541
|
|
542 A[:] = [round(x*100,1) / total_reads for x in A]
|
|
543 C[:] = [round(x*100,1) / total_reads for x in C]
|
|
544 G[:] = [round(x*100,1) / total_reads for x in G]
|
|
545 T[:] = [round(x*100,1) / total_reads for x in T]
|
|
546
|
|
547 data = {'A':A,'C':C,'G':G,'T':T}
|
|
548 df = pd.DataFrame(data, index=[1,2,3])
|
|
549
|
|
550 h=df.plot.bar(color=tuple(["g", "b","gold","r"]) )
|
|
551 h.grid(axis='y',linewidth=0.2)
|
|
552 plt.xticks(rotation=0, ha="right")
|
|
553 plt.ylabel("Counts (%)",fontsize=18)
|
|
554 plt.xlabel("Numbers of additional nucleotides",fontsize=18)
|
|
555 plt.title(titlos,fontsize=20)
|
|
556 plt.tight_layout()
|
|
557 plt.savefig(file_bar, dpi=300)
|
|
558
|
|
559 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans')
|
|
560
|
|
561 crp_logo.style_spines(visible=False)
|
|
562 crp_logo.style_spines(spines=['left', 'bottom'], visible=True)
|
|
563 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0)
|
|
564 crp_logo.ax.set_title(titlos,fontsize=18)
|
|
565 crp_logo.ax.set_ylabel("Counts (%)", fontsize=16,labelpad=5)
|
|
566 crp_logo.ax.set_xlabel("Numbers of additional nucleotides",fontsize=16, labelpad=5)
|
|
567 crp_logo.ax.xaxis.set_ticks_position('none')
|
|
568 crp_logo.ax.xaxis.set_tick_params(pad=-1)
|
|
569 figure = plt.gcf()
|
|
570 figure.set_size_inches(6, 4)
|
|
571 crp_logo.fig.savefig(file_logo,dpi=300)
|
|
572
|
|
573 ##########################################################################################################################################################################################################
|
|
574
|
|
575 def pdf_before_DE(analysis,group_name1,group_name2):
|
|
576
|
|
577 # Image extensions
|
|
578 if analysis=="2":
|
|
579 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png")
|
|
580 else:
|
|
581 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png")
|
|
582 # This list will hold the images file names
|
|
583 images = []
|
|
584
|
|
585 # Build the image list by merging the glob results (a list of files)
|
|
586 # for each extension. We are taking images from current folder.
|
|
587 for extension in image_extensions:
|
|
588 images.extend(glob.glob(extension))
|
|
589 #sys.exit(images)
|
|
590 # Create instance of FPDF class
|
|
591 pdf = FPDF('P', 'in', 'A4')
|
|
592 # Add new page. Without this you cannot create the document.
|
|
593 pdf.add_page()
|
|
594 # Set font to Arial, 'B'old, 16 pts
|
|
595 pdf.set_font('Arial', 'B', 20.0)
|
|
596
|
|
597 # Page header
|
|
598 pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C')
|
|
599 pdf.ln(0.7)
|
|
600 pdf.set_font('Arial','', 16.0)
|
|
601 pdf.cell(pdf.w-0.5, 0.5, 'sRNA length distribution',align='C')
|
|
602
|
|
603 # Smaller font for image captions
|
|
604 pdf.set_font('Arial', '', 11.0)
|
|
605
|
|
606 # Image caption
|
|
607 pdf.ln(0.5)
|
|
608
|
|
609 yh=FPDF.get_y(pdf)
|
|
610 pdf.image(images[0],x=0.3,w=4, h=3)
|
|
611 pdf.image(images[1],x=4,y=yh, w=4, h=3)
|
|
612 pdf.ln(0.3)
|
|
613
|
|
614 # Image caption
|
|
615 pdf.cell(0.2)
|
|
616 pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in "+group_name1)
|
|
617 pdf.ln(0.2)
|
|
618 pdf.cell(0.2)
|
|
619 pdf.cell(3.0, 0.0, " (left) and "+group_name2+" (right) groups")
|
|
620
|
|
621
|
|
622 pdf.ln(0.5)
|
|
623 h1=FPDF.get_y(pdf)
|
|
624 pdf.image(images[2],x=1, w=6.5, h=5)
|
|
625 h2=FPDF.get_y(pdf)
|
|
626 FPDF.set_y(pdf,h1+0.2)
|
|
627 pdf.set_font('Arial','', 16.0)
|
|
628 pdf.cell(pdf.w-0.5, 0.5, 'Template and non-template isomiRs',align='C')
|
|
629 pdf.set_font('Arial', '', 11.0)
|
|
630 FPDF.set_y(pdf,h2)
|
|
631 FPDF.set_y(pdf,9.5)
|
|
632 # Image caption
|
|
633 pdf.cell(0.2)
|
|
634 if analysis=="2":
|
|
635 pdf.cell(3.0, 0.0, " RefSeq miRNAs, templated isomiRs, non-templated isomiRs and unassigned sequences as percentage")
|
|
636 pdf.ln(0.2)
|
|
637 pdf.cell(0.2)
|
|
638 pdf.cell(3.0, 0.0, " of total sRNA reads in "+group_name1+" (left) and "+group_name2+" (right) groups")
|
|
639
|
|
640 else:
|
|
641 pdf.cell(3.0, 0.0, " RefSeq miRNAS, Templated isomiRs and unassigned sequences as percentage of total sRNA reads in")
|
|
642 pdf.ln(0.2)
|
|
643 pdf.cell(0.2)
|
|
644 pdf.cell(3.0, 0.0, " "+group_name1+" (left) and "+group_name2+" (right) groups")
|
|
645
|
|
646 pdf.add_page()
|
|
647 pdf.set_font('Arial', 'B', 18.0)
|
|
648 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR subtypes",align='C')
|
|
649 pdf.ln(0.7)
|
|
650 pdf.set_font('Arial', 'B', 14.0)
|
|
651 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR profile (redundant reads)",align='C')
|
|
652 pdf.ln(0.5)
|
|
653 pdf.image(images[3],x=1.5, w=5.5, h=4)
|
|
654 pdf.ln(0.6)
|
|
655 pdf.cell(pdf.w-0.5, 0.0, "Templated isomiR profile (non-redundant reads)",align='C')
|
|
656 pdf.set_font('Arial', '', 12.0)
|
|
657 pdf.ln(0.2)
|
|
658 pdf.image(images[4],x=1.5, w=5.5, h=4)
|
|
659 pdf.ln(0.3)
|
|
660 pdf.set_font('Arial', '', 11.0)
|
|
661 pdf.cell(0.2)
|
|
662 pdf.cell(3.0, 0.0, " * IsomiRs potentially generated from multiple loci")
|
|
663
|
|
664 if analysis=="2":
|
|
665 pdf.add_page('L')
|
|
666
|
|
667 pdf.set_font('Arial', 'B', 18.0)
|
|
668 pdf.cell(pdf.w-0.5, 0.5, "Non-templated isomiRs",align='C')
|
|
669 pdf.ln(0.5)
|
|
670 pdf.set_font('Arial', 'B', 14.0)
|
|
671 pdf.cell(pdf.w-0.5, 0.5, "3'-end additions to RefSeq miRNAs and templated isomiRs",align='C')
|
|
672 pdf.ln(0.7)
|
|
673
|
|
674 yh=FPDF.get_y(pdf)
|
|
675 pdf.image(images[5],x=1.5,w=3.65, h=2.65)
|
|
676 pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65)
|
|
677 pdf.ln(0.5)
|
|
678 yh=FPDF.get_y(pdf)
|
|
679 pdf.image(images[6],x=1.5,w=3.65, h=2.65)
|
|
680 pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65)
|
|
681
|
|
682 pdf.close()
|
|
683 pdf.output('report1.pdf','F')
|
|
684
|
|
685 #############################################################################################################################################################3
|
|
686
|