Mercurial > repos > glogobyte > isoread
comparison mirbase_functions.py @ 2:47232a73a46b draft
Uploaded
| author | glogobyte |
|---|---|
| date | Wed, 13 Oct 2021 16:04:11 +0000 |
| parents | |
| children | 77ba8dde6fb7 |
comparison
equal
deleted
inserted
replaced
| 1:f10c8f43f010 | 2:47232a73a46b |
|---|---|
| 1 import itertools | |
| 2 import re | |
| 3 import urllib.request | |
| 4 import gzip | |
| 5 import copy | |
| 6 from collections import OrderedDict | |
| 7 | |
| 8 | |
| 9 | |
| 10 # Read a file and return it as a list | |
| 11 def read(path, flag): | |
| 12 if flag == 0: | |
| 13 with open(path) as fp: | |
| 14 file=fp.readlines() | |
| 15 fp.close() | |
| 16 return file | |
| 17 | |
| 18 if flag == 1: | |
| 19 with open(path) as fp: | |
| 20 file = fp.read().splitlines() | |
| 21 fp.close() | |
| 22 return file | |
| 23 | |
| 24 # Write a list to a txt file | |
| 25 def write(path, list): | |
| 26 with open(path,'w') as fp: | |
| 27 for x in list: | |
| 28 fp.write(str("\t".join(x[1:-1]))) | |
| 29 fp.close() | |
| 30 | |
| 31 | |
| 32 #################################################################################################################> | |
| 33 | |
| 34 # Detect the longest common substring sequence between two mirnas | |
| 35 def longestSubstring(str1, str2): | |
| 36 | |
| 37 from difflib import SequenceMatcher | |
| 38 # initialize SequenceMatcher object with | |
| 39 # input string | |
| 40 seqMatch = SequenceMatcher(None, str1, str2) | |
| 41 | |
| 42 # find match of longest sub-string | |
| 43 # output will be like Match(a=0, b=0, size=5) | |
| 44 match = seqMatch.find_longest_match(0, len(str1), 0, len(str2)) | |
| 45 | |
| 46 # print longest substring | |
| 47 if (match.size != 0): | |
| 48 return str1[match.a: match.a + match.size] | |
| 49 else: | |
| 50 print('No longest common sub-string found') | |
| 51 | |
| 52 ################################################################################################################################################################################################################# | |
| 53 | |
| 54 """ | |
| 55 | |
| 56 This function concatenates miRNAs which are generated from different chromosomes | |
| 57 and eliminates the duplications of miRNAs on every sample | |
| 58 | |
| 59 input: detected miRNAs | |
| 60 output: collpased miRNAs without duplicates | |
| 61 | |
| 62 """ | |
| 63 | |
| 64 | |
| 65 def remove_duplicates(mirnas): | |
| 66 | |
| 67 # Detection of canonical mirRNAs whicha are generated from different chromosomes | |
| 68 dupes=[[x[9],x[0],x[2]] for x in mirnas] | |
| 69 | |
| 70 for x in mirnas: | |
| 71 for y in dupes: | |
| 72 if x[9] == y[0] and x[0] == y[1] and x[2].split("_")[0] == y[2].split("_")[0] and x[2] != y[2]: | |
| 73 y.append(x[2]) | |
| 74 | |
| 75 # Detection of different chromosomes for every miRNA | |
| 76 chr_order = [] | |
| 77 for x in dupes: | |
| 78 temp = [] | |
| 79 for i in range(2,len(x)): | |
| 80 if x[i].split("chr")[1].split("(")[0].isdigit(): | |
| 81 temp.append(int(x[i].split("chr")[1].split("(")[1][0]+x[i].split("chr")[1].split("(")[0])) | |
| 82 else: | |
| 83 temp.append(x[i].split("chr")[1][0:4]) | |
| 84 | |
| 85 for z in temp: | |
| 86 if 'X(-)'==z or 'Y(-)'==z or 'X(+)'==z or 'Y(+)'==z: | |
| 87 temp = [str(j) for j in temp] | |
| 88 temp = list(set(temp)) | |
| 89 temp.sort() | |
| 90 chr_order.append(temp) | |
| 91 | |
| 92 # Collapsing the miRNAs with the same sequence from different chromosomes | |
| 93 collapsed_dupes=[] | |
| 94 for i in range(len(dupes)): | |
| 95 collapsed_dupes.append([dupes[i][0],dupes[i][2].split("_")[0],dupes[i][1]]) | |
| 96 for x in chr_order[i]: | |
| 97 chr_check = re.match("[-+]?\d+$", str(x)) # check if chromosome is 'X' or 'Y' | |
| 98 if chr_check is not None: | |
| 99 if int(x)<0: # Check the strand (+) or (-) | |
| 100 collapsed_dupes[i][1]= collapsed_dupes[i][1]+"_chr"+str(abs(int(x)))+"(-)" | |
| 101 else: | |
| 102 collapsed_dupes[i][1] = collapsed_dupes[i][1] + "_chr" + str(abs(int(x)))+"(+)" | |
| 103 else: | |
| 104 collapsed_dupes[i][1] = collapsed_dupes[i][1] + "_chr" + str(x) | |
| 105 | |
| 106 # Remove duplicates from collapsed_dupes | |
| 107 collapsed_dupes.sort() | |
| 108 collapsed_dupes = list(collapsed_dupes for collapsed_dupes,_ in itertools.groupby(collapsed_dupes)) | |
| 109 | |
| 110 for i in range(len(mirnas)): | |
| 111 for x in collapsed_dupes: | |
| 112 | |
| 113 # Naming of template isomirs (adding positions in the names) | |
| 114 if mirnas[i][9] == x[0] and mirnas[i][0] == x[2] and len(mirnas[i][2].split("_")) >3 and mirnas[i][2].split("_")[0]==x[1].split("_")[0]: | |
| 115 gg=str("_t_"+mirnas[i][2].split("_")[-2]+"_"+mirnas[i][2].split("_")[-1]) | |
| 116 mirnas[i][2] = x[1]+gg | |
| 117 break | |
| 118 | |
| 119 # Naming of canonical miRNAs (collpsed names) | |
| 120 if mirnas[i][9]==x[0] and mirnas[i][0]== x[2] and len(mirnas[i][2].split("_"))==3 and mirnas[i][2].split("_")[0]==x[1].split("_")[0]: | |
| 121 mirnas[i][2] = x[1] | |
| 122 break | |
| 123 | |
| 124 # Remove duplicates | |
| 125 mirnas.sort() | |
| 126 mirnas=list(mirnas for mirnas,_ in itertools.groupby(mirnas)) | |
| 127 | |
| 128 return mirnas | |
| 129 | |
| 130 ############################################################################################################################################################################################################# | |
| 131 | |
| 132 """ | |
| 133 | |
| 134 This function indentifies and classifies the miRNAs which are detected from the alignment tool. | |
| 135 | |
| 136 """ | |
| 137 | |
| 138 def sam_edit(mature_mirnas,path,file,case,l,samples,data,file_order,unmap_seq,names_n_seqs,deseq,mirna_names,ini_sample,unmap_counts): | |
| 139 | |
| 140 # read the sam file | |
| 141 ini_sam=read(path,0) | |
| 142 main_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" not in x.split("\t")[0]] # remove introduction | |
| 143 unique_seq = [x for x in main_sam if x[1] == '0' and len(x[9])>=18 and len(x[9])<=26] # keeps only the functional miRNAs | |
| 144 filter_sam = [[x[0],x[1],x[2],len(x[9])] for x in main_sam] # keeps only the necessary info of miRNAs from sam files (name, sequence, counts, etc) | |
| 145 | |
| 146 sorted_uni_arms = [] | |
| 147 | |
| 148 for i in range(0,len(mature_mirnas,),2): | |
| 149 tmp_count_reads = 0 # calculate the total number of reads | |
| 150 tmp_count_seq = 0 # calculate the total number of sequences | |
| 151 for j in range(len(unique_seq)): | |
| 152 | |
| 153 if "{" in unique_seq[j][2].split("_")[0]: # checks if a miRNA is generated from two different locis on the same chromosome | |
| 154 mirna=unique_seq[j][2].split("_")[0][:-4] | |
| 155 else: | |
| 156 mirna=unique_seq[j][2].split("_")[0] | |
| 157 | |
| 158 # Detection of differences between the canonical miRNA and the detected miRNA | |
| 159 if mature_mirnas[i].split(" ")[0][1:] == mirna: | |
| 160 | |
| 161 temp_mature = mature_mirnas[i+1].strip().replace("U", "T") | |
| 162 off_part = longestSubstring(temp_mature, unique_seq[j][9]) | |
| 163 | |
| 164 mat_diff = temp_mature.split(off_part) | |
| 165 mat_diff = [len(mat_diff[0]), len(mat_diff[1])] | |
| 166 | |
| 167 unique_diff = unique_seq[j][9].split(off_part) | |
| 168 unique_diff = [len(unique_diff[0]), len(unique_diff[1])] | |
| 169 | |
| 170 # Handling of some special mirnas like (hsa-miR-8485) | |
| 171 if mat_diff[1]!=0 and unique_diff[1]!=0: | |
| 172 unique_seq[j]=1 | |
| 173 pre_pos = 0 | |
| 174 post_pos = 0 | |
| 175 | |
| 176 elif mat_diff[0]!=0 and unique_diff[0]!=0: | |
| 177 unique_seq[j]=1 | |
| 178 pre_pos = 0 | |
| 179 post_pos = 0 | |
| 180 | |
| 181 else: | |
| 182 # Keep the findings | |
| 183 pre_pos = mat_diff[0]-unique_diff[0] | |
| 184 post_pos = unique_diff[1]-mat_diff[1] | |
| 185 tmp_count_reads = tmp_count_reads + int(unique_seq[j][0].split("-")[1]) | |
| 186 tmp_count_seq = tmp_count_seq+1 | |
| 187 | |
| 188 # Store the detected miRNAs with new names according to the findings | |
| 189 if pre_pos != 0 or post_pos != 0: | |
| 190 if pre_pos == 0: | |
| 191 unique_seq[j][2] = unique_seq[j][2].split("_")[0]+"_"+unique_seq[j][2].split("_")[2]+ "_t_" +str(pre_pos) + "_" + '{:+d}'.format(post_pos) | |
| 192 elif post_pos == 0: | |
| 193 unique_seq[j][2] = unique_seq[j][2].split("_")[0]+"_"+unique_seq[j][2].split("_")[2] + "_t_" + '{:+d}'.format(pre_pos) + "_" + str(post_pos) | |
| 194 else: | |
| 195 unique_seq[j][2] = unique_seq[j][2].split("_")[0]+"_"+unique_seq[j][2].split("_")[2]+"_t_"+'{:+d}'.format(pre_pos)+"_"+'{:+d}'.format(post_pos) | |
| 196 | |
| 197 # Remove the values "1" from the handling of special mirnas (hsa-miR-8485) | |
| 198 for x in range(unique_seq.count(1)): | |
| 199 unique_seq.remove(1) | |
| 200 | |
| 201 # metrics for the production of database | |
| 202 if tmp_count_reads != 0 and tmp_count_seq != 0: | |
| 203 sorted_uni_arms.append([mature_mirnas[i].split(" ")[0][1:], tmp_count_seq, tmp_count_reads]) | |
| 204 | |
| 205 # Sorting of the metrics for database | |
| 206 sorted_uni_arms = sorted(sorted_uni_arms, key=lambda x: x[1], reverse=True) | |
| 207 | |
| 208 # Collapsing of miRNAs and removing of duplicates | |
| 209 collapsed_mirnas = remove_duplicates(unique_seq) | |
| 210 | |
| 211 # Correction of metrics due to the collapsing and removing of duplicates for the production of Database | |
| 212 for y in sorted_uni_arms: | |
| 213 counts=0 | |
| 214 seqs=0 | |
| 215 for x in collapsed_mirnas: | |
| 216 if y[0]==x[2].split("_")[0]: | |
| 217 counts+=int(x[0].split("-")[1]) | |
| 218 seqs+=1 | |
| 219 | |
| 220 y[1]=seqs | |
| 221 y[2]=counts | |
| 222 | |
| 223 | |
| 224 # Output variables | |
| 225 temp_mirna_names=[] | |
| 226 | |
| 227 l.acquire() | |
| 228 | |
| 229 if case == "c" or case == "t": | |
| 230 temp_mirna_names.extend(z[2] for z in collapsed_mirnas) | |
| 231 names_n_seqs.extend([[y[2],y[9]] for y in collapsed_mirnas]) | |
| 232 deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in collapsed_mirnas]) | |
| 233 mirna_names.extend(temp_mirna_names) | |
| 234 unmap_seq.value += sum([1 for x in main_sam if x[1] == '4']) # Keeps the unmap unique sequences for the production of a graph | |
| 235 unmap_counts.value += sum([int(x[0].split("-")[1]) for x in main_sam if x[1] == '4']) # Keeps the unmap counts of sequences for the production of a graph | |
| 236 file_order.append(file) #Keeps the names of SAM files with the order of reading by the fuction (avoid problems due to multiprocesssing) | |
| 237 samples.append(collapsed_mirnas) # return the processed detected miRNAs | |
| 238 data.append([case,file,collapsed_mirnas,sorted_uni_arms]) | |
| 239 ini_sample.append(filter_sam) # returns the filtered sam file | |
| 240 | |
| 241 l.release() | |
| 242 | |
| 243 | |
| 244 ###################################################################################################################################### | |
| 245 | |
| 246 | |
| 247 """ | |
| 248 | |
| 249 Read a sam file from Bowtie and do the followings: | |
| 250 | |
| 251 1) Remove reverse stranded mapped reads | |
| 252 2) Remove unmapped reads | |
| 253 3) Remove all sequences with reads less than 11 reads | |
| 254 4) Sort the arms with the most sequences in decreading rate | |
| 255 5) Sort the sequences of every arm with the most reads in decreasing rate | |
| 256 6) Calculate total number of sequences of every arm | |
| 257 7) Calculate total number of reads of sequences of every arm. | |
| 258 8) Store all the informations in a txt file | |
| 259 | |
| 260 """ | |
| 261 | |
| 262 def non_sam_edit(mature_mirnas,path,file,case,l,data,file_order,n_deseq,names_n_seqs): | |
| 263 | |
| 264 # read the sam file | |
| 265 ini_sam=read(path,0) | |
| 266 main_sam = [x.rstrip("\n").split("\t") for x in ini_sam if "@" not in x.split("\t")[0]] | |
| 267 unique_seq=[] | |
| 268 unique_seq = [x for x in main_sam if x[1] == '4' and len(x[9])>=18 and len(x[9])<=26] | |
| 269 | |
| 270 uni_seq=[] | |
| 271 | |
| 272 # Calculate the shifted positions for every non template mirna and add them to the name of it | |
| 273 sorted_uni_arms = [] | |
| 274 for i in range(1,len(mature_mirnas),2): | |
| 275 tmp_count_reads = 0 # calculate the total number of reads | |
| 276 tmp_count_seq = 0 # calculate the total number of sequences | |
| 277 | |
| 278 for j in range(len(unique_seq)): | |
| 279 | |
| 280 temp_mature = mature_mirnas[i].strip().replace("U", "T") | |
| 281 | |
| 282 # Detection of differences between the canonical miRNA and the detected non template miRNA | |
| 283 if temp_mature in unique_seq[j][9]: | |
| 284 | |
| 285 off_part = longestSubstring(temp_mature, unique_seq[j][9]) | |
| 286 | |
| 287 mat_diff = temp_mature.split(off_part) | |
| 288 mat_diff = [len(mat_diff[0]), len(mat_diff[1])] | |
| 289 | |
| 290 unique_diff = unique_seq[j][9].split(off_part) | |
| 291 if len(unique_diff)<=2: | |
| 292 unique_diff = [len(unique_diff[0]), len(unique_diff[1])] | |
| 293 | |
| 294 pre_pos = mat_diff[0]-unique_diff[0] | |
| 295 post_pos = unique_diff[1]-mat_diff[1] | |
| 296 | |
| 297 lengthofmir = len(off_part) + post_pos | |
| 298 if pre_pos == 0 and post_pos<4: | |
| 299 tmp_count_reads = tmp_count_reads + int(unique_seq[j][0].split("-")[1]) | |
| 300 tmp_count_seq = tmp_count_seq + 1 | |
| 301 | |
| 302 t_name=unique_seq[j].copy() | |
| 303 t_name[2]=mature_mirnas[i - 1].split(" ")[0][1:] + "_nont_" + str(pre_pos) + "_" + '{:+d}'.format(post_pos) + "_" + str(unique_seq[j][9][len(off_part):]) | |
| 304 uni_seq.append(t_name) | |
| 305 # metrics for the production of database | |
| 306 if tmp_count_reads != 0 and tmp_count_seq != 0: | |
| 307 sorted_uni_arms.append([mature_mirnas[i-1].split(" ")[0][1:], tmp_count_seq, tmp_count_reads]) | |
| 308 | |
| 309 sorted_uni_arms = sorted(sorted_uni_arms, key=lambda x: x[1], reverse=True) | |
| 310 unique_seq = list(map(list, OrderedDict.fromkeys(map(tuple,uni_seq)))) | |
| 311 | |
| 312 # Output variables | |
| 313 l.acquire() | |
| 314 if case=="c" or case=="t": | |
| 315 names_n_seqs.extend([[y[2],y[9]] for y in unique_seq if y[2]!="*"]) | |
| 316 n_deseq.append([[x[2], x[0].split('-')[1], x[9]] for x in unique_seq if x[2]!="*"]) | |
| 317 file_order.append(file) | |
| 318 data.append([case,file,unique_seq,sorted_uni_arms]) | |
| 319 l.release() | |
| 320 | |
| 321 ################################################################################################################################################################################################################# | |
| 322 | |
| 323 def black_white(mirna_names_1,mirna_names_2,group,manager): | |
| 324 | |
| 325 add_names = [x for x in mirna_names_1 if x not in mirna_names_2] | |
| 326 add_names.sort() | |
| 327 add_names = list(add_names for add_names,_ in itertools.groupby(add_names)) | |
| 328 | |
| 329 group.sort() | |
| 330 group = list(group for group,_ in itertools.groupby(group)) | |
| 331 | |
| 332 zeros=["0"]*(len(group[0])-2) | |
| 333 [add_names[i].extend(zeros) for i,_ in enumerate(add_names)] | |
| 334 group=group+add_names | |
| 335 | |
| 336 manager.extend(group) | |
| 337 | |
| 338 ################################################################################################################################################################################################################################ | |
| 339 | |
| 340 def merging_dupes(group,f_dupes): | |
| 341 | |
| 342 dupes=[] | |
| 343 final_mat =[] | |
| 344 | |
| 345 for num,_ in enumerate(group): | |
| 346 | |
| 347 if group[num][1] not in final_mat and group[num][0] not in final_mat: | |
| 348 final_mat.append(group[num][1]) | |
| 349 final_mat.append(group[num][0]) | |
| 350 else: | |
| 351 dupes.append(group[num][1]) | |
| 352 | |
| 353 | |
| 354 dupes=list(set(dupes)) | |
| 355 | |
| 356 dupes=[[x] for x in dupes] | |
| 357 | |
| 358 for x in group: | |
| 359 for y in dupes: | |
| 360 if x[1]==y[0]: | |
| 361 fl=0 | |
| 362 if len(y)==1: | |
| 363 y.append(x[0]) | |
| 364 else: | |
| 365 for i in range(1,len(y)): | |
| 366 if y[i].split("_")[0]==x[0].split("_")[0]: | |
| 367 fl=1 | |
| 368 if len(x[0])<len(y[i]): | |
| 369 del y[i] | |
| 370 y.append(x[0]) | |
| 371 break | |
| 372 | |
| 373 if fl==0: | |
| 374 y.append((x[0])) | |
| 375 | |
| 376 for y in dupes: | |
| 377 if len(y)>2: | |
| 378 for i in range(len(y)-1,1,-1): | |
| 379 y[1]=y[1]+"/"+y[i] | |
| 380 del y[i] | |
| 381 | |
| 382 f_dupes.extend(dupes) | |
| 383 | |
| 384 ########################################################################################################################################################################################################################################## | |
| 385 | |
| 386 def apply_merging_dupes(group,dupes,managger): | |
| 387 | |
| 388 for x in group: | |
| 389 for y in dupes: | |
| 390 if x[1]==y[0]: | |
| 391 x[0]=y[1] | |
| 392 | |
| 393 group.sort() | |
| 394 group=list(group for group,_ in itertools.groupby(group)) | |
| 395 managger.extend(group) | |
| 396 | |
| 397 ############################################################################################################################################################################################################################### | |
| 398 | |
| 399 | |
| 400 def filter_low_counts(c_group,t_group,fil_c_group,fil_t_group,per,counts): | |
| 401 | |
| 402 t_group_new=[] | |
| 403 c_group_new=[] | |
| 404 | |
| 405 percent=int(per)/100 | |
| 406 c_col_filter=round(percent*(len(c_group[1])-2)) | |
| 407 t_col_filter=round(percent*(len(t_group[1])-2)) | |
| 408 | |
| 409 for i, _ in enumerate(c_group): | |
| 410 c_cols=0 | |
| 411 t_cols=0 | |
| 412 | |
| 413 c_cols=sum([1 for j in range(len(c_group[i])-2) if int(c_group[i][j+2])>=int(counts)]) | |
| 414 t_cols=sum([1 for j in range(len(t_group[i])-2) if int(t_group[i][j+2])>=int(counts)]) | |
| 415 | |
| 416 if c_cols>=c_col_filter or t_cols>=t_col_filter: | |
| 417 t_group_new.append(t_group[i]) | |
| 418 c_group_new.append(c_group[i]) | |
| 419 | |
| 420 fil_c_group.extend(c_group_new) | |
| 421 fil_t_group.extend(t_group_new) | |
| 422 | |
| 423 ################################################################################################################################################################################################################## | |
| 424 | |
| 425 | |
| 426 def write_main(raw_con, raw_tre, fil_con, fil_tre, con_file_order, tre_file_order, flag, group_name1, group_name2, per): | |
| 427 | |
| 428 if flag == 1 and int(per)!=-1: | |
| 429 fp = open('Counts/Filtered '+group_name2 +' Templated Counts', 'w') | |
| 430 fp.write("Name\t") | |
| 431 fp.write("Sequence") | |
| 432 for y in tre_file_order: | |
| 433 fp.write("\t"+y) | |
| 434 | |
| 435 for x in fil_tre: | |
| 436 fp.write("\n%s" % "\t".join(x)) | |
| 437 fp.close() | |
| 438 | |
| 439 fp = open('Counts/Filtered '+group_name1+' Templated Counts', 'w') | |
| 440 fp.write("Name\t") | |
| 441 fp.write("Sequence") | |
| 442 for y in con_file_order: | |
| 443 fp.write("\t"+y) | |
| 444 | |
| 445 for x in fil_con: | |
| 446 fp.write("\n%s" % "\t".join(x)) | |
| 447 fp.close() | |
| 448 | |
| 449 | |
| 450 if flag == 2 and int(per)!=-1: | |
| 451 fp = open('Counts/Filtered '+group_name2+' Non-Templated Counts', 'w') | |
| 452 fp.write("Name\t") | |
| 453 fp.write("Sequence") | |
| 454 for y in tre_file_order: | |
| 455 fp.write("\t"+y) | |
| 456 | |
| 457 | |
| 458 for x in fil_tre: | |
| 459 fp.write("\n%s" % "\t".join(x)) | |
| 460 fp.close() | |
| 461 | |
| 462 fp = open('Counts/Filtered '+group_name1+' Non-Templated Counts', 'w') | |
| 463 fp.write("Name\t") | |
| 464 fp.write("Sequence") | |
| 465 for y in con_file_order: | |
| 466 fp.write("\t"+y) | |
| 467 | |
| 468 for x in fil_con: | |
| 469 fp.write("\n%s" % "\t".join(x)) | |
| 470 fp.close() | |
| 471 | |
| 472 | |
| 473 if flag == 1: | |
| 474 fp = open('Counts/Raw '+group_name2+' Templated Counts', 'w') | |
| 475 fp.write("Name\t") | |
| 476 fp.write("Sequence") | |
| 477 for y in tre_file_order: | |
| 478 fp.write("\t"+y) | |
| 479 | |
| 480 for x in raw_tre: | |
| 481 fp.write("\n%s" % "\t".join(x)) | |
| 482 fp.close() | |
| 483 | |
| 484 fp = open('Counts/Raw '+group_name1+' Templated Counts', 'w') | |
| 485 fp.write("Name\t") | |
| 486 fp.write("Sequence") | |
| 487 for y in con_file_order: | |
| 488 fp.write("\t"+y) | |
| 489 | |
| 490 for x in raw_con: | |
| 491 fp.write("\n%s" % "\t".join(x)) | |
| 492 fp.close() | |
| 493 | |
| 494 | |
| 495 if flag == 2: | |
| 496 fp = open('Counts/Raw '+group_name2+' Non-Templated Counts', 'w') | |
| 497 fp.write("Name\t") | |
| 498 fp.write("Sequence") | |
| 499 for y in tre_file_order: | |
| 500 fp.write("\t"+y) | |
| 501 | |
| 502 | |
| 503 for x in raw_tre: | |
| 504 fp.write("\n%s" % "\t".join(x)) | |
| 505 fp.close() | |
| 506 | |
| 507 fp = open('Counts/Raw '+group_name1+' Non-Templated Counts', 'w') | |
| 508 fp.write("Name\t") | |
| 509 fp.write("Sequence") | |
| 510 for y in con_file_order: | |
| 511 fp.write("\t"+y) | |
| 512 | |
| 513 for x in raw_con: | |
| 514 fp.write("\n%s" % "\t".join(x)) | |
| 515 fp.close() | |
| 516 | |
| 517 | |
| 518 ######################################################################################################################################### | |
| 519 | |
| 520 def temp_counts_to_diff(names,samp,folder): | |
| 521 | |
| 522 for i in range(2,len(samp[0])): | |
| 523 | |
| 524 fp = open(folder+names[i-2]+'.txt','w') | |
| 525 fp.write("miRNA id"+"\t"+names[i-2]+"\n") | |
| 526 | |
| 527 for x in samp: | |
| 528 fp.write("%s" % "\t".join([x[0],x[i]])+"\n") | |
| 529 fp.close() | |
| 530 | |
| 531 ################################################################################################################## | |
| 532 | |
| 533 def DB_write(con,name,unique_seq,sorted_uni_arms,f): | |
| 534 | |
| 535 if f==1: | |
| 536 # Write a txt file with all the information | |
| 537 if con=="c": | |
| 538 fp = open('split1/'+name, 'w') | |
| 539 | |
| 540 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
| 541 if con=="t": | |
| 542 fp = open('split2/'+name, 'w') | |
| 543 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
| 544 | |
| 545 | |
| 546 for i in range(len(sorted_uni_arms)): | |
| 547 temp = [] | |
| 548 for j in range(len(unique_seq)): | |
| 549 | |
| 550 if sorted_uni_arms[i][0] in unique_seq[j][2].split("_")[0]: | |
| 551 | |
| 552 temp.append(unique_seq[j]) | |
| 553 | |
| 554 temp = sorted(temp, key=lambda x: int(x[0].split('-')[1]), reverse=True) | |
| 555 fp.write("*********************************************************************************************************\n") | |
| 556 fp.write("%-8s\t%-22s\t%-25s\t%-30s\t%s\n" % ("|",str(sorted_uni_arms[i][0]),"Sequence count = "+str(sorted_uni_arms[i][1]),"Total reads = "+str(sorted_uni_arms[i][2]),"|")) | |
| 557 fp.write("*********************************************************************************************************\n\n") | |
| 558 [fp.write("%-8s\t%-40s\t%s\n" % (x[0].split("-")[1], x[2],x[9])) for x in temp] | |
| 559 fp.write("\n" + "\n") | |
| 560 fp.close() | |
| 561 | |
| 562 if f==2: | |
| 563 | |
| 564 if con=="c": | |
| 565 fp = open('split3/'+name, 'w') | |
| 566 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
| 567 if con=="t": | |
| 568 fp = open('split4/'+name, 'w') | |
| 569 fp.write("%s\t%-42s\t%s\n\n" % ("Number of Reads","Name of isomir","Sequence")) | |
| 570 | |
| 571 | |
| 572 for i in range(len(sorted_uni_arms)): | |
| 573 temp = [] | |
| 574 for j in range(len(unique_seq)): | |
| 575 if sorted_uni_arms[i][0]==unique_seq[j][2].split("_nont_")[0]: | |
| 576 temp.append(unique_seq[j]) | |
| 577 if temp!=[]: | |
| 578 temp = sorted(temp, key=lambda x: int(x[0].split('-')[1]), reverse=True) | |
| 579 fp.write("*********************************************************************************************************\n") | |
| 580 fp.write("%-8s\t%-22s\t%-25s\t%-30s\t%s\n" % ("|",str(sorted_uni_arms[i][0]),"Sequence count = "+str(sorted_uni_arms[i][1]),"Total reads = "+str(sorted_uni_arms[i][2]),"|")) | |
| 581 fp.write("*********************************************************************************************************\n\n") | |
| 582 [fp.write("%-8s\t%-40s\t%s\n" % (x[0].split("-")[1], x[2],x[9])) for x in temp] | |
| 583 fp.write("\n" + "\n") | |
| 584 fp.close() | |
| 585 | |
| 586 | |
| 587 ########################################################################################################################## | |
| 588 | |
| 589 def new_mat_seq(pre_unique_seq,mat_mirnas,l): | |
| 590 | |
| 591 unique_iso = [] | |
| 592 for x in pre_unique_seq: | |
| 593 if len(x[2].split("_"))==3: | |
| 594 for y in pre_unique_seq: | |
| 595 if x[2] in y[2] and int(x[0].split("-")[1])<int(y[0].split("-")[1]): | |
| 596 if any(y[2] in lst2 for lst2 in unique_iso)==False: | |
| 597 y[2]=">"+y[2] | |
| 598 unique_iso.append(y) | |
| 599 l.acquire() | |
| 600 for x in unique_iso: | |
| 601 mat_mirnas.append(x[2]) | |
| 602 mat_mirnas.append(x[9]) | |
| 603 l.release() | |
| 604 | |
| 605 ######################################################################################################################### | |
| 606 | |
| 607 def merging_names(ini_mat,new): | |
| 608 | |
| 609 dupes=[] | |
| 610 final_mat =[] | |
| 611 | |
| 612 for num in range(len(ini_mat)): | |
| 613 | |
| 614 if ini_mat[num][1] not in final_mat and ini_mat[num][0] not in final_mat: | |
| 615 final_mat.append(ini_mat[num][1]) | |
| 616 final_mat.append(ini_mat[num][0]) | |
| 617 else: | |
| 618 dupes.append(ini_mat[num][1]) | |
| 619 | |
| 620 dupes=list(set(dupes)) | |
| 621 | |
| 622 for i in range(len(dupes)): | |
| 623 dupes[i]=[dupes[i]] | |
| 624 | |
| 625 for x in ini_mat: | |
| 626 for y in dupes: | |
| 627 if x[1]==y[0]: | |
| 628 fl=0 | |
| 629 if len(y)==1: | |
| 630 y.append(x[0]) | |
| 631 else: | |
| 632 for i in range(1,len(y)): | |
| 633 if y[i].split("_")[0]==x[0].split("_")[0]: | |
| 634 fl=1 | |
| 635 if len(x[0])<len(y[i]): | |
| 636 del y[i] | |
| 637 y.append(x[0]) | |
| 638 break | |
| 639 | |
| 640 if fl==0: | |
| 641 y.append((x[0])) | |
| 642 | |
| 643 for y in dupes: | |
| 644 if len(y)>2: | |
| 645 for i in range(len(y)-1,1,-1): | |
| 646 y[1]=y[1]+"/"+y[i] | |
| 647 del y[i] | |
| 648 | |
| 649 | |
| 650 for x in ini_mat: | |
| 651 for y in dupes: | |
| 652 if x[1]==y[0]: | |
| 653 x[0]=y[1] | |
| 654 | |
| 655 ini_mat.sort() | |
| 656 ini_mat=list(ini_mat for ini_mat,_ in itertools.groupby(ini_mat)) | |
| 657 | |
| 658 new.extend(ini_mat) | |
| 659 | |
| 660 | |
| 661 ###################################################################################################################################################### | |
| 662 | |
| 663 def nontemp_counts_to_diff(tem_names,tem_samp,non_names,non_samp,folder): | |
| 664 | |
| 665 for i in range(2,len(tem_samp[0])): | |
| 666 | |
| 667 fp = open(folder+tem_names[i-2]+'.txt','w') | |
| 668 fp.write("miRNA id"+"\t"+tem_names[i-2]+"\n") | |
| 669 | |
| 670 for x in tem_samp: | |
| 671 fp.write("%s" % "\t".join([x[0],x[i]])+"\n") | |
| 672 | |
| 673 for j in range(len(non_names)): | |
| 674 if non_names[j]==tem_names[i-2]: | |
| 675 for x in non_samp: | |
| 676 fp.write("%s" % "\t".join([x[0],x[j+2]])+"\n") | |
| 677 fp.close() | |
| 678 | |
| 679 ################################################################################################################################################################################################################### | |
| 680 | |
| 681 """ | |
| 682 | |
| 683 This function downloads all the miRNAs of all the species from MirBase | |
| 684 and filters them by the requested organism | |
| 685 | |
| 686 input : Organism | |
| 687 output: A list with the miRNA sequences in fasta format | |
| 688 | |
| 689 """ | |
| 690 | |
| 691 def download_matures(matures,org_name): | |
| 692 | |
| 693 url = 'ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz' | |
| 694 data = urllib.request.urlopen(url).read() | |
| 695 file_mirna = gzip.decompress(data).decode('utf-8') | |
| 696 file_mirna = file_mirna.split("\n") | |
| 697 | |
| 698 for i in range(0,len(file_mirna)-1,2): | |
| 699 | |
| 700 if org_name in file_mirna[i]: | |
| 701 matures.append(file_mirna[i]) | |
| 702 matures.append(file_mirna[i+1]) | |
| 703 | |
| 704 ################################################################################################################################################################################################################### | |
| 705 | |
| 706 | |
| 707 """ | |
| 708 | |
| 709 This function keeps all mirna isoforms which are detected on SAM files from the first part of the analysis | |
| 710 These isoforms will be used as refence sequences with canonical (ref) mirnas for the detection of non-template | |
| 711 mirnas | |
| 712 | |
| 713 """ | |
| 714 | |
| 715 | |
| 716 def non_template_ref(c_samples,t_samples,all_isoforms): | |
| 717 | |
| 718 pre_uni_seq_con = list(c_samples) | |
| 719 pre_uni_seq_tre = list(t_samples) | |
| 720 | |
| 721 for x in pre_uni_seq_con: | |
| 722 for y in x: | |
| 723 #if ">"+y[2] not in all_isoforms and ")_" in y[2] : | |
| 724 if ">"+y[2] not in all_isoforms and "_t_" in y[2] : | |
| 725 all_isoforms.append(">"+y[2]) | |
| 726 all_isoforms.append(y[9]) | |
| 727 | |
| 728 for x in pre_uni_seq_tre: | |
| 729 for y in x: | |
| 730 #if ">"+y[2] not in all_isoforms and ")_" in y[2]: | |
| 731 if ">"+y[2] not in all_isoforms and "_t_" in y[2] : | |
| 732 all_isoforms.append(">"+y[2]) | |
| 733 all_isoforms.append(y[9]) | |
| 734 | |
| 735 ################################################################################################################################################################################################ | |
| 736 | |
| 737 """ | |
| 738 | |
| 739 This function adds the uncommon detected miRNAs among samples. | |
| 740 As a result all samples will have the same length. | |
| 741 | |
| 742 """ | |
| 743 | |
| 744 def uncommon_mirnas(sample,mir_names,l,new_d,sample_name,sample_order): | |
| 745 | |
| 746 for y in mir_names: | |
| 747 flag=0 | |
| 748 for x in sample: | |
| 749 if y[0]==x[0]: # check if miRNA exists in the sample | |
| 750 flag=1 | |
| 751 break | |
| 752 if flag==0: | |
| 753 sample.append([y[0],"0",y[1]]) # add the name of mirna to the sample with zero counts and its sequence | |
| 754 | |
| 755 # sorting and remove duplicates | |
| 756 sample.sort(key=lambda x: x[0]) | |
| 757 sample=list(sample for sample,_ in itertools.groupby(sample)) | |
| 758 | |
| 759 # Return the updated sample | |
| 760 l.acquire() | |
| 761 new_d.append(sample) | |
| 762 sample_order.append(sample_name) | |
| 763 l.release() | |
| 764 | |
| 765 ############################################################################################################################################################################################### | |
| 766 |
