Mercurial > repos > glogobyte > isoread
comparison mirbase_graphs.py @ 3:d77b33e65501 draft
Uploaded
author | glogobyte |
---|---|
date | Wed, 13 Oct 2021 16:04:28 +0000 |
parents | |
children | fa48ad87ae3e |
comparison
equal
deleted
inserted
replaced
2:47232a73a46b | 3:d77b33e65501 |
---|---|
1 import itertools | |
2 import pandas as pd | |
3 from math import pi | |
4 import numpy as np | |
5 import matplotlib.pyplot as plt | |
6 import math | |
7 import logomaker as lm | |
8 from fpdf import FPDF, fpdf | |
9 import glob | |
10 | |
11 ################################################################################################################################################################# | |
12 | |
13 def pie_non_temp(merge_con,merge_non_con,merge_tre,merge_non_tre,c_unmap,t_unmap,c_unmap_counts,t_unmap_counts,group_name1,group_name2): | |
14 | |
15 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
16 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
17 c_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_con] | |
18 t_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_tre] | |
19 | |
20 c_templ = 0 | |
21 c_tem_counts = 0 | |
22 c_mature = 0 | |
23 c_mat_counts = 0 | |
24 t_templ = 0 | |
25 t_tem_counts = 0 | |
26 t_mature = 0 | |
27 t_mat_counts = 0 | |
28 | |
29 c_non = len(c_non_samples) | |
30 c_non_counts = sum(x[2] for x in c_non_samples) | |
31 t_non = len(t_non_samples) | |
32 t_non_counts = sum(x[2] for x in t_non_samples) | |
33 | |
34 c_unmap = c_unmap - c_non | |
35 t_unmap = c_unmap - t_non | |
36 | |
37 c_unmap_counts=c_unmap_counts - c_non_counts | |
38 t_unmap_counts=t_unmap_counts - t_non_counts | |
39 | |
40 | |
41 for x in c_samples: | |
42 | |
43 if "/" not in x[0]: | |
44 if "chr" in x[0].split("_")[-1]: | |
45 c_mature+=1 | |
46 c_mat_counts += x[2] | |
47 else: | |
48 c_templ+=1 | |
49 c_tem_counts += x[2] | |
50 else: | |
51 f=0 | |
52 for y in x[0].split("/"): | |
53 if "chr" in y.split("_")[-1]: | |
54 c_mature+=1 | |
55 c_mat_counts += x[2] | |
56 f=1 | |
57 break | |
58 if f==0: | |
59 c_templ+=1 | |
60 c_tem_counts += x[2] | |
61 | |
62 for x in t_samples: | |
63 | |
64 if "/" not in x[0]: | |
65 if "chr" in x[0].split("_")[-1]: | |
66 t_mature+=1 | |
67 t_mat_counts += x[2] | |
68 else: | |
69 t_templ+=1 | |
70 t_tem_counts += x[2] | |
71 else: | |
72 f=0 | |
73 for y in x[0].split("/"): | |
74 if "chr" in y.split("_")[-1]: | |
75 t_mature+=1 | |
76 t_mat_counts += x[2] | |
77 f=1 | |
78 break | |
79 if f==0: | |
80 t_templ+=1 | |
81 t_tem_counts += x[2] | |
82 | |
83 fig = plt.figure(figsize=(7,5)) | |
84 labels = 'miRNA RefSeq','Template', 'Unassigned','Non-template' | |
85 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts,c_non_counts] | |
86 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
87 ax1 = plt.subplot2grid((1,2),(0,0)) | |
88 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
89 [x.set_fontsize(8) for x in texts] | |
90 plt.title(group_name1 + ' Group (reads)',fontsize=12) | |
91 labels = 'miRNA RefSeq','Template', 'Unassigned','non-template' | |
92 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts, t_non_counts] | |
93 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
94 ax2 = plt.subplot2grid((1,2),(0,1)) | |
95 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
96 [x.set_fontsize(8) for x in texts] | |
97 plt.title(group_name2 + ' Group (reads)', fontsize=12) | |
98 plt.savefig('pie_non.png',dpi=300) | |
99 | |
100 ###################################################################################################################################################### | |
101 | |
102 | |
103 def pie_temp(merge_con,c_unmap,c_unmap_counts,merge_tre,t_unmap,t_unmap_counts,group_name1,group_name2): | |
104 | |
105 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
106 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
107 | |
108 c_templ = 0 | |
109 c_tem_counts = 0 | |
110 c_mature = 0 | |
111 c_mat_counts = 0 | |
112 t_templ = 0 | |
113 t_tem_counts = 0 | |
114 t_mature = 0 | |
115 t_mat_counts = 0 | |
116 | |
117 for x in c_samples: | |
118 | |
119 if "/" not in x[0]: | |
120 if "chr" in x[0].split("_")[-1]: | |
121 c_mature+=1 | |
122 c_mat_counts += x[2] | |
123 else: | |
124 c_templ+=1 | |
125 c_tem_counts += x[2] | |
126 else: | |
127 f=0 | |
128 for y in x[0].split("/"): | |
129 if "chr" in y.split("_")[-1]: | |
130 c_mature+=1 | |
131 c_mat_counts += x[2] | |
132 f=1 | |
133 break | |
134 if f==0: | |
135 c_templ+=1 | |
136 c_tem_counts += x[2] | |
137 | |
138 for x in t_samples: | |
139 | |
140 if "/" not in x[0]: | |
141 if "chr" in x[0].split("_")[-1]: | |
142 t_mature+=1 | |
143 t_mat_counts += x[2] | |
144 else: | |
145 t_templ+=1 | |
146 t_tem_counts += x[2] | |
147 else: | |
148 f=0 | |
149 for y in x[0].split("/"): | |
150 if "chr" in y.split("_")[-1]: | |
151 t_mature+=1 | |
152 t_mat_counts += x[2] | |
153 f=1 | |
154 break | |
155 if f==0: | |
156 t_templ+=1 | |
157 t_tem_counts += x[2] | |
158 | |
159 | |
160 fig = plt.figure() | |
161 labels = 'miRNA RefSeq','Template', 'Unassigned' | |
162 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts] | |
163 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
164 explode = (0.2, 0.05, 0.1) | |
165 ax1 = plt.subplot2grid((1,2),(0,0)) | |
166 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
167 [x.set_fontsize(8) for x in texts] | |
168 plt.title(group_name1 + ' group (reads)', fontsize=12) | |
169 labels = 'miRNA RefSeq','Template', 'Unassigned' | |
170 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts] | |
171 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
172 explode = (0.2, 0.05, 0.1) | |
173 ax2 = plt.subplot2grid((1,2),(0,1)) | |
174 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
175 [x.set_fontsize(8) for x in texts] | |
176 plt.title(group_name2 + ' group (reads)',fontsize = 12) | |
177 plt.savefig('pie_tem.png',dpi=300) | |
178 | |
179 ################################################################################################################################################################################################################### | |
180 | |
181 | |
182 def make_spider(merge_con,merge_tre,group_name1,group_name2): | |
183 | |
184 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
185 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
186 | |
187 c_5 = 0 | |
188 c_5_counts = 0 | |
189 c_3 = 0 | |
190 c_3_counts = 0 | |
191 c_both =0 | |
192 c_both_counts=0 | |
193 c_mature = 0 | |
194 c_mat_counts = 0 | |
195 c_exception=0 | |
196 c_exception_counts=0 | |
197 | |
198 | |
199 t_5 = 0 | |
200 t_5_counts = 0 | |
201 t_3 = 0 | |
202 t_3_counts = 0 | |
203 t_both = 0 | |
204 t_both_counts = 0 | |
205 t_mature = 0 | |
206 t_mat_counts = 0 | |
207 t_exception = 0 | |
208 t_exception_counts=0 | |
209 | |
210 for x in c_samples: | |
211 | |
212 if "/" not in x[0]: | |
213 if "chr" in x[0].split("_")[-1]: | |
214 c_mature+=1 | |
215 c_mat_counts += x[2] | |
216 elif 0 == int(x[0].split("_")[-1]): | |
217 c_5+=1 | |
218 c_5_counts += x[2] | |
219 elif 0 == int(x[0].split("_")[-2]): | |
220 c_3+=1 | |
221 c_3_counts += x[2] | |
222 else: | |
223 c_both+=1 | |
224 c_both_counts+=x[2] | |
225 | |
226 else: | |
227 f=0 | |
228 for y in x[0].split("/"): | |
229 if "chr" in y.split("_")[-1]: | |
230 c_mature+=1 | |
231 c_mat_counts += x[2] | |
232 f=1 | |
233 break | |
234 if f==0: | |
235 for y in x[0].split("/"): | |
236 c_exception+=1 | |
237 c_exception_counts += x[2] | |
238 | |
239 | |
240 for x in t_samples: | |
241 | |
242 if "/" not in x[0]: | |
243 if "chr" in x[0].split("_")[-1]: | |
244 t_mature+=1 | |
245 t_mat_counts += x[2] | |
246 elif 0 == int(x[0].split("_")[-1]): | |
247 t_5+=1 | |
248 t_5_counts += x[2] | |
249 elif 0 == int(x[0].split("_")[-2]): | |
250 t_3+=1 | |
251 t_3_counts += x[2] | |
252 else: | |
253 t_both+=1 | |
254 t_both_counts+=x[2] | |
255 | |
256 else: | |
257 f=0 | |
258 for y in x[0].split("/"): | |
259 if "chr" in y.split("_")[-1]: | |
260 t_mature+=1 | |
261 t_mat_counts += x[2] | |
262 f=1 | |
263 break | |
264 if f==0: | |
265 for y in x[0].split("/"): | |
266 t_exception+=1 | |
267 t_exception_counts += x[2] | |
268 | |
269 | |
270 c_all = c_5+c_3+c_both+c_mature+c_exception | |
271 c_all_counts = c_5_counts + c_3_counts + c_both_counts + c_mat_counts + c_exception_counts | |
272 | |
273 t_all = t_5+t_3+t_both+t_mature + t_exception | |
274 t_all_counts = t_5_counts + t_3_counts + t_both_counts + t_mat_counts + t_exception_counts | |
275 | |
276 c_5 = round(c_5/c_all*100,2) | |
277 c_3 = round(c_3/c_all*100,2) | |
278 c_both = round(c_both/c_all*100,2) | |
279 c_mature = round(c_mature/c_all*100,2) | |
280 c_exception = round(c_exception/c_all*100,2) | |
281 | |
282 c_5_counts = round(c_5_counts/c_all_counts*100,2) | |
283 c_3_counts = round(c_3_counts/c_all_counts*100,2) | |
284 c_both_counts = round(c_both_counts/c_all_counts*100,2) | |
285 c_mat_counts = round(c_mat_counts/c_all_counts*100,2) | |
286 c_exception_counts = round(c_exception_counts/c_all_counts*100,2) | |
287 | |
288 t_5 = round(t_5/t_all*100,2) | |
289 t_3 = round(t_3/t_all*100,2) | |
290 t_both = round(t_both/t_all*100,2) | |
291 t_mature = round(t_mature/t_all*100,2) | |
292 t_exception = round(t_exception/t_all*100,2) | |
293 | |
294 t_5_counts = round(t_5_counts/t_all_counts*100,2) | |
295 t_3_counts = round(t_3_counts/t_all_counts*100,2) | |
296 t_both_counts = round(t_both_counts/t_all_counts*100,2) | |
297 t_mat_counts = round(t_mat_counts/t_all_counts*100,2) | |
298 t_exception_counts = round(t_exception_counts/t_all_counts*100,2) | |
299 | |
300 radar_max = max(c_5, c_3, c_both,c_mature,c_exception,t_5,t_3,t_both,t_mature,t_exception) | |
301 radar_max_counts = max(c_5_counts,c_3_counts,c_both_counts,c_mat_counts,c_exception_counts,t_5_counts,t_3_counts,t_both_counts,t_mat_counts,t_exception_counts) | |
302 | |
303 df=pd.DataFrame({ | |
304 'group':[group_name1,group_name2], | |
305 """5'3'-isomiRs""":[c_both,t_both], | |
306 """3'-isomiRs""":[c_3,t_3], | |
307 'RefSeq miRNA':[c_mature,t_mature], | |
308 """5'-isomiRs""":[c_5,t_5], | |
309 'Others*':[c_exception,t_exception]}) | |
310 | |
311 df1=pd.DataFrame({ | |
312 'group':[group_name1,group_name2], | |
313 """5'3'-isomiRs""":[c_both_counts,t_both_counts], | |
314 """3'-isomiRs""":[c_3_counts,t_3_counts], | |
315 'RefSeq miRNA':[c_mat_counts,t_mat_counts], | |
316 """5'-isomiRs""":[c_5_counts,t_5_counts], | |
317 'Others*':[c_exception_counts,t_exception_counts]}) | |
318 | |
319 spider_last(df,radar_max,1,group_name1,group_name2) | |
320 spider_last(df1,radar_max_counts,2,group_name1,group_name2) | |
321 | |
322 ##################################################################################################################################################### | |
323 | |
324 def spider_last(df,radar_max,flag,group_name1,group_name2): | |
325 # ------- PART 1: Create background | |
326 fig = plt.figure() | |
327 # number of variable | |
328 categories=list(df)[1:] | |
329 N = len(categories) | |
330 | |
331 # What will be the angle of each axis in the plot? (we divide the plot / number of variable) | |
332 angles = [n / float(N) * 2 * pi for n in range(N)] | |
333 angles += angles[:1] | |
334 | |
335 # Initialise the spider plot | |
336 ax = plt.subplot(111, polar=True) | |
337 | |
338 # If you want the first axis to be on top: | |
339 ax.set_theta_offset(pi/2) | |
340 ax.set_theta_direction(-1) | |
341 | |
342 # Draw one axe per variable + add labels labels yet | |
343 plt.xticks(angles[:-1], categories, fontsize=11) | |
344 | |
345 # Draw ylabels | |
346 radar_max=round(radar_max+radar_max*0.1) | |
347 mul=len(str(radar_max))-1 | |
348 maxi=int(math.ceil(radar_max / pow(10,mul))) * pow(10,mul) | |
349 sep = round(maxi/4) | |
350 plt.yticks([sep, 2*sep, 3*sep, 4*sep, 5*sep], [str(sep)+'%', str(2*sep)+'%', str(3*sep)+'%', str(4*sep)+'%', str(5*sep)+'%'], color="grey", size=10) | |
351 plt.ylim(0, maxi) | |
352 | |
353 # ------- PART 2: Add plots | |
354 | |
355 # Plot each individual = each line of the data | |
356 # I don't do a loop, because plotting more than 3 groups makes the chart unreadable | |
357 | |
358 # Ind1 | |
359 values=df.loc[0].drop('group').values.flatten().tolist() | |
360 values += values[:1] | |
361 ax.plot(angles, values,'-o', linewidth=1, linestyle='solid', label=group_name1) | |
362 ax.fill(angles, values, 'b', alpha=0.1) | |
363 | |
364 # Ind2 | |
365 values=df.loc[1].drop('group').values.flatten().tolist() | |
366 values += values[:1] | |
367 ax.plot(angles, values, '-o' ,linewidth=1, linestyle='solid', label=group_name2) | |
368 ax.fill(angles, values, 'r', alpha=0.1) | |
369 | |
370 # Add legend | |
371 if flag==1: | |
372 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
373 plt.savefig('spider_non_red.png',dpi=300) | |
374 else: | |
375 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
376 plt.savefig('spider_red.png',dpi=300) | |
377 | |
378 | |
379 ############################################################################################################################################################################################################# | |
380 | |
381 def hist_red(samples,flag,group_name): | |
382 | |
383 lengths=[] | |
384 cat=[] | |
385 total_reads=0 | |
386 seq=[] | |
387 | |
388 if flag == "c": | |
389 title = "Length Distribution of "+ group_name +" group (Redudant reads)" | |
390 if flag == "t": | |
391 title = "Length Distribution of "+ group_name +" group (Redudant reads)" | |
392 | |
393 # classification of the sequences on two categories mapped or unmapped | |
394 for i in samples: | |
395 for x in i: | |
396 lengths.append(x[3]) | |
397 if x[1]=="0": | |
398 seq.append([x[3],x[0].split("-")[1],"Mapped"]) | |
399 cat.append("Mapped") | |
400 if x[1] == "4": | |
401 seq.append([x[3],x[0].split("-")[1],"Unassigned"]) | |
402 cat.append("Unassigned") | |
403 | |
404 # Keep lengths below 35nts | |
405 uni_len=list(set(lengths)) | |
406 uni_len=[x for x in uni_len if x<=35] | |
407 | |
408 # Remove duplicates from sequences | |
409 seq.sort() | |
410 uni_seq=list(seq for seq,_ in itertools.groupby(seq)) | |
411 | |
412 # Calculation of the reads per group (mapped or unmapped) | |
413 total_reads+=sum([int(x[1]) for x in uni_seq]) | |
414 map_reads=[] | |
415 unmap_reads=[] | |
416 length=[] | |
417 for y in uni_len: | |
418 map_temp=0 | |
419 unmap_temp=0 | |
420 for x in uni_seq: | |
421 if x[0]==y and x[2]=="Mapped": | |
422 map_temp+=int(x[1]) | |
423 if x[0]==y and x[2]=="Unassigned": | |
424 unmap_temp+=int(x[1]) | |
425 length.append(y) | |
426 map_reads.append(round(map_temp/total_reads*100,2)) # percentage of mapped reads over total number of sequences | |
427 unmap_reads.append(round(unmap_temp/total_reads*100,2)) # percentage of unmapped reads over total number of sequences | |
428 | |
429 # Generation of the graph | |
430 ylim=max([sum(x) for x in zip(unmap_reads, map_reads)]) | |
431 ylim=ylim+ylim*20/100 | |
432 fig, ax = plt.subplots() | |
433 width=0.8 | |
434 ax.bar(length, unmap_reads, width, label='Unassigned') | |
435 h=ax.bar(length, map_reads, width, bottom=unmap_reads, label='Mapped') | |
436 plt.xticks(np.arange(length[0], length[-1]+1, 1)) | |
437 plt.yticks(np.arange(0, ylim, 5)) | |
438 plt.xlabel('Length (nt)',fontsize=14) | |
439 plt.ylabel('Percentage',fontsize=14) | |
440 plt.title(title,fontsize=14) | |
441 ax.legend() | |
442 plt.ylim([0, ylim]) | |
443 ax.grid(axis='y',linewidth=0.2) | |
444 | |
445 # Save of the graph | |
446 if flag=='c': | |
447 plt.savefig('c_hist_red.png',dpi=300) | |
448 | |
449 if flag=='t': | |
450 plt.savefig('t_hist_red.png',dpi=300) | |
451 | |
452 ################################################################################################################# | |
453 | |
454 def logo_seq_red(merge, flag, group_name): | |
455 | |
456 if flag=="c": | |
457 titlos= group_name + " group (Redundant)" | |
458 file_logo="c_logo.png" | |
459 file_bar="c_bar.png" | |
460 if flag=="t": | |
461 titlos= group_name + " group (Redundant)" | |
462 file_logo="t_logo.png" | |
463 file_bar="t_bar.png" | |
464 | |
465 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge] | |
466 | |
467 A=[0]*3 | |
468 C=[0]*3 | |
469 G=[0]*3 | |
470 T=[0]*3 | |
471 total_reads=0 | |
472 | |
473 for y in c_samples: | |
474 if "/" in y[0]: | |
475 length=[] | |
476 for x in y[0].split("/"): | |
477 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
478 | |
479 best=min(length) | |
480 total_reads+=best[2] | |
481 for i in range(3): | |
482 if i<len(best[1]): | |
483 if best[1][i] == "A": | |
484 A[i]+=best[2] | |
485 elif best[1][i] == "C": | |
486 C[i]+=best[2] | |
487 elif best[1][i] == "G": | |
488 G[i]+=best[2] | |
489 else: | |
490 T[i]+=best[2] | |
491 else: | |
492 total_reads+=y[2] | |
493 for i in range(3): | |
494 if i<len(y[0].split("_")[-1]): | |
495 if y[0].split("_")[-1][i] == "A": | |
496 A[i]+=(y[2]) | |
497 elif y[0].split("_")[-1][i] == "C": | |
498 C[i]+=(y[2]) | |
499 elif y[0].split("_")[-1][i] == "G": | |
500 G[i]+=(y[2]) | |
501 else: | |
502 T[i]+=y[2] | |
503 | |
504 A[:] = [round(x*100,1) / total_reads for x in A] | |
505 C[:] = [round(x*100,1) / total_reads for x in C] | |
506 G[:] = [round(x*100,1) / total_reads for x in G] | |
507 T[:] = [round(x*100,1) / total_reads for x in T] | |
508 | |
509 | |
510 | |
511 data = {'A':A,'C':C,'G':G,'T':T} | |
512 df = pd.DataFrame(data, index=[1,2,3]) | |
513 h=df.plot.bar(color=tuple(["g", "b","gold","r"]) ) | |
514 h.grid(axis='y',linewidth=0.2) | |
515 plt.xticks(rotation=0, ha="right") | |
516 plt.ylabel("Counts (%)",fontsize=18) | |
517 plt.xlabel("Numbers of additional nucleotides",fontsize=18) | |
518 plt.title(titlos,fontsize=20) | |
519 plt.tight_layout() | |
520 plt.savefig(file_bar, dpi=300) | |
521 | |
522 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
523 crp_logo.style_spines(visible=False) | |
524 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
525 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
526 | |
527 # style using Axes methods | |
528 crp_logo.ax.set_title(titlos,fontsize=18) | |
529 crp_logo.ax.set_ylabel("Counts (%)", fontsize=16,labelpad=5) | |
530 crp_logo.ax.set_xlabel("Numbers of additional nucleotides",fontsize=16, labelpad=5) | |
531 crp_logo.ax.xaxis.set_ticks_position('none') | |
532 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
533 figure = plt.gcf() | |
534 figure.set_size_inches(6, 4) | |
535 crp_logo.fig.savefig(file_logo,dpi=300) | |
536 | |
537 ########################################################################################################################################################################################################## | |
538 | |
539 def pdf_before_DE(analysis,group_name1,group_name2): | |
540 | |
541 # Image extensions | |
542 if analysis=="2": | |
543 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png") | |
544 else: | |
545 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png") | |
546 # This list will hold the images file names | |
547 images = [] | |
548 | |
549 # Build the image list by merging the glob results (a list of files) | |
550 # for each extension. We are taking images from current folder. | |
551 for extension in image_extensions: | |
552 images.extend(glob.glob(extension)) | |
553 | |
554 # Create instance of FPDF class | |
555 pdf = FPDF('P', 'in', 'A4') | |
556 # Add new page. Without this you cannot create the document. | |
557 pdf.add_page() | |
558 # Set font to Arial, 'B'old, 16 pts | |
559 pdf.set_font('Arial', 'B', 20.0) | |
560 | |
561 # Page header | |
562 pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C') | |
563 pdf.ln(0.7) | |
564 pdf.set_font('Arial','B', 16.0) | |
565 pdf.cell(pdf.w-0.5, 0.5, 'sRNA length distribution',align='C') | |
566 | |
567 # Smaller font for image captions | |
568 pdf.set_font('Arial', '', 11.0) | |
569 pdf.ln(0.5) | |
570 | |
571 yh=FPDF.get_y(pdf) | |
572 pdf.image(images[0],x=0.3,w=4, h=3) | |
573 pdf.image(images[1],x=4,y=yh, w=4, h=3) | |
574 pdf.ln(0.3) | |
575 | |
576 pdf.cell(0.2) | |
577 pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in "+group_name1) | |
578 pdf.ln(0.2) | |
579 pdf.cell(0.2) | |
580 pdf.cell(3.0, 0.0, " (left) and "+group_name2+" (right) groups") | |
581 | |
582 pdf.ln(0.5) | |
583 h1=FPDF.get_y(pdf) | |
584 pdf.image(images[2],x=1, w=6.5, h=5) | |
585 h2=FPDF.get_y(pdf) | |
586 FPDF.set_y(pdf,h1+0.2) | |
587 pdf.set_font('Arial','B', 16.0) | |
588 pdf.cell(pdf.w-0.5, 0.5, 'Templated and non-templated isomiRs',align='C') | |
589 pdf.set_font('Arial', '', 11.0) | |
590 FPDF.set_y(pdf,h2) | |
591 FPDF.set_y(pdf,9.5) | |
592 pdf.cell(0.2) | |
593 | |
594 if analysis=="2": | |
595 pdf.cell(3.0, 0.0, " RefSeq miRNAs, templated isomiRs, non-templated isomiRs and unassigned sequences as percentage") | |
596 pdf.ln(0.2) | |
597 pdf.cell(0.2) | |
598 pdf.cell(3.0, 0.0, " of total sRNA reads in "+group_name1+" (left) and "+group_name2+" (right) groups") | |
599 else: | |
600 pdf.cell(3.0, 0.0, " RefSeq miRNAS, Templated isomiRs and unassigned sequences as percentage of total sRNA reads in") | |
601 pdf.ln(0.2) | |
602 pdf.cell(0.2) | |
603 pdf.cell(3.0, 0.0, " "+group_name1+" (left) and "+group_name2 + " (right) groups") | |
604 | |
605 pdf.add_page() | |
606 pdf.set_font('Arial', 'B', 18.0) | |
607 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR subtypes",align='C') | |
608 pdf.ln(0.7) | |
609 pdf.set_font('Arial', 'B', 14.0) | |
610 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR profile (redundant reads)",align='C') | |
611 pdf.ln(0.5) | |
612 pdf.image(images[3],x=1.5, w=5.5, h=4) | |
613 pdf.ln(0.6) | |
614 pdf.cell(pdf.w-0.5, 0.0, "Templated isomiR profile (non-redundant reads)",align='C') | |
615 pdf.set_font('Arial', '', 12.0) | |
616 pdf.ln(0.2) | |
617 pdf.image(images[4],x=1.5, w=5.5, h=4) | |
618 pdf.ln(0.3) | |
619 pdf.set_font('Arial', '', 11.0) | |
620 pdf.cell(0.2) | |
621 pdf.cell(3.0, 0.0, " * IsomiRs potentially generated from multiple loci") | |
622 | |
623 | |
624 if analysis=="2": | |
625 pdf.add_page('L') | |
626 | |
627 pdf.set_font('Arial', 'B', 18.0) | |
628 pdf.cell(pdf.w-0.5, 0.5, "Non-templated isomiRs",align='C') | |
629 pdf.ln(0.5) | |
630 pdf.set_font('Arial', 'B', 14.0) | |
631 pdf.cell(pdf.w-0.5, 0.5, "3'-end additions to RefSeq miRNAs and templated isomiRs",align='C') | |
632 pdf.ln(0.7) | |
633 | |
634 yh=FPDF.get_y(pdf) | |
635 pdf.image(images[5],x=1.5,w=3.65, h=2.65) | |
636 pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65) | |
637 pdf.ln(0.5) | |
638 yh=FPDF.get_y(pdf) | |
639 pdf.image(images[6],x=1.5,w=3.65, h=2.65) | |
640 pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65) | |
641 | |
642 pdf.close() | |
643 pdf.output('report1.pdf','F') | |
644 | |
645 #############################################################################################################################################################3 | |
646 | |
647 |