Mercurial > repos > glogobyte > isoread
comparison mirbase_graphs.py @ 3:d77b33e65501 draft
Uploaded
| author | glogobyte |
|---|---|
| date | Wed, 13 Oct 2021 16:04:28 +0000 |
| parents | |
| children | fa48ad87ae3e |
comparison
equal
deleted
inserted
replaced
| 2:47232a73a46b | 3:d77b33e65501 |
|---|---|
| 1 import itertools | |
| 2 import pandas as pd | |
| 3 from math import pi | |
| 4 import numpy as np | |
| 5 import matplotlib.pyplot as plt | |
| 6 import math | |
| 7 import logomaker as lm | |
| 8 from fpdf import FPDF, fpdf | |
| 9 import glob | |
| 10 | |
| 11 ################################################################################################################################################################# | |
| 12 | |
| 13 def pie_non_temp(merge_con,merge_non_con,merge_tre,merge_non_tre,c_unmap,t_unmap,c_unmap_counts,t_unmap_counts,group_name1,group_name2): | |
| 14 | |
| 15 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
| 16 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
| 17 c_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_con] | |
| 18 t_non_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_non_tre] | |
| 19 | |
| 20 c_templ = 0 | |
| 21 c_tem_counts = 0 | |
| 22 c_mature = 0 | |
| 23 c_mat_counts = 0 | |
| 24 t_templ = 0 | |
| 25 t_tem_counts = 0 | |
| 26 t_mature = 0 | |
| 27 t_mat_counts = 0 | |
| 28 | |
| 29 c_non = len(c_non_samples) | |
| 30 c_non_counts = sum(x[2] for x in c_non_samples) | |
| 31 t_non = len(t_non_samples) | |
| 32 t_non_counts = sum(x[2] for x in t_non_samples) | |
| 33 | |
| 34 c_unmap = c_unmap - c_non | |
| 35 t_unmap = c_unmap - t_non | |
| 36 | |
| 37 c_unmap_counts=c_unmap_counts - c_non_counts | |
| 38 t_unmap_counts=t_unmap_counts - t_non_counts | |
| 39 | |
| 40 | |
| 41 for x in c_samples: | |
| 42 | |
| 43 if "/" not in x[0]: | |
| 44 if "chr" in x[0].split("_")[-1]: | |
| 45 c_mature+=1 | |
| 46 c_mat_counts += x[2] | |
| 47 else: | |
| 48 c_templ+=1 | |
| 49 c_tem_counts += x[2] | |
| 50 else: | |
| 51 f=0 | |
| 52 for y in x[0].split("/"): | |
| 53 if "chr" in y.split("_")[-1]: | |
| 54 c_mature+=1 | |
| 55 c_mat_counts += x[2] | |
| 56 f=1 | |
| 57 break | |
| 58 if f==0: | |
| 59 c_templ+=1 | |
| 60 c_tem_counts += x[2] | |
| 61 | |
| 62 for x in t_samples: | |
| 63 | |
| 64 if "/" not in x[0]: | |
| 65 if "chr" in x[0].split("_")[-1]: | |
| 66 t_mature+=1 | |
| 67 t_mat_counts += x[2] | |
| 68 else: | |
| 69 t_templ+=1 | |
| 70 t_tem_counts += x[2] | |
| 71 else: | |
| 72 f=0 | |
| 73 for y in x[0].split("/"): | |
| 74 if "chr" in y.split("_")[-1]: | |
| 75 t_mature+=1 | |
| 76 t_mat_counts += x[2] | |
| 77 f=1 | |
| 78 break | |
| 79 if f==0: | |
| 80 t_templ+=1 | |
| 81 t_tem_counts += x[2] | |
| 82 | |
| 83 fig = plt.figure(figsize=(7,5)) | |
| 84 labels = 'miRNA RefSeq','Template', 'Unassigned','Non-template' | |
| 85 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts,c_non_counts] | |
| 86 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
| 87 ax1 = plt.subplot2grid((1,2),(0,0)) | |
| 88 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 89 [x.set_fontsize(8) for x in texts] | |
| 90 plt.title(group_name1 + ' Group (reads)',fontsize=12) | |
| 91 labels = 'miRNA RefSeq','Template', 'Unassigned','non-template' | |
| 92 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts, t_non_counts] | |
| 93 colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue'] | |
| 94 ax2 = plt.subplot2grid((1,2),(0,1)) | |
| 95 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 96 [x.set_fontsize(8) for x in texts] | |
| 97 plt.title(group_name2 + ' Group (reads)', fontsize=12) | |
| 98 plt.savefig('pie_non.png',dpi=300) | |
| 99 | |
| 100 ###################################################################################################################################################### | |
| 101 | |
| 102 | |
| 103 def pie_temp(merge_con,c_unmap,c_unmap_counts,merge_tre,t_unmap,t_unmap_counts,group_name1,group_name2): | |
| 104 | |
| 105 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
| 106 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
| 107 | |
| 108 c_templ = 0 | |
| 109 c_tem_counts = 0 | |
| 110 c_mature = 0 | |
| 111 c_mat_counts = 0 | |
| 112 t_templ = 0 | |
| 113 t_tem_counts = 0 | |
| 114 t_mature = 0 | |
| 115 t_mat_counts = 0 | |
| 116 | |
| 117 for x in c_samples: | |
| 118 | |
| 119 if "/" not in x[0]: | |
| 120 if "chr" in x[0].split("_")[-1]: | |
| 121 c_mature+=1 | |
| 122 c_mat_counts += x[2] | |
| 123 else: | |
| 124 c_templ+=1 | |
| 125 c_tem_counts += x[2] | |
| 126 else: | |
| 127 f=0 | |
| 128 for y in x[0].split("/"): | |
| 129 if "chr" in y.split("_")[-1]: | |
| 130 c_mature+=1 | |
| 131 c_mat_counts += x[2] | |
| 132 f=1 | |
| 133 break | |
| 134 if f==0: | |
| 135 c_templ+=1 | |
| 136 c_tem_counts += x[2] | |
| 137 | |
| 138 for x in t_samples: | |
| 139 | |
| 140 if "/" not in x[0]: | |
| 141 if "chr" in x[0].split("_")[-1]: | |
| 142 t_mature+=1 | |
| 143 t_mat_counts += x[2] | |
| 144 else: | |
| 145 t_templ+=1 | |
| 146 t_tem_counts += x[2] | |
| 147 else: | |
| 148 f=0 | |
| 149 for y in x[0].split("/"): | |
| 150 if "chr" in y.split("_")[-1]: | |
| 151 t_mature+=1 | |
| 152 t_mat_counts += x[2] | |
| 153 f=1 | |
| 154 break | |
| 155 if f==0: | |
| 156 t_templ+=1 | |
| 157 t_tem_counts += x[2] | |
| 158 | |
| 159 | |
| 160 fig = plt.figure() | |
| 161 labels = 'miRNA RefSeq','Template', 'Unassigned' | |
| 162 sizes = [c_mat_counts, c_tem_counts, c_unmap_counts] | |
| 163 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
| 164 explode = (0.2, 0.05, 0.1) | |
| 165 ax1 = plt.subplot2grid((1,2),(0,0)) | |
| 166 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 167 [x.set_fontsize(8) for x in texts] | |
| 168 plt.title(group_name1 + ' group (reads)', fontsize=12) | |
| 169 labels = 'miRNA RefSeq','Template', 'Unassigned' | |
| 170 sizes = [t_mat_counts, t_tem_counts, t_unmap_counts] | |
| 171 colors = ['gold', 'yellowgreen', 'lightskyblue'] | |
| 172 explode = (0.2, 0.05, 0.1) | |
| 173 ax2 = plt.subplot2grid((1,2),(0,1)) | |
| 174 patches, texts, autotexts=plt.pie(sizes, labels=labels, colors=colors, startangle=140,autopct='%1.1f%%',radius=0.8) | |
| 175 [x.set_fontsize(8) for x in texts] | |
| 176 plt.title(group_name2 + ' group (reads)',fontsize = 12) | |
| 177 plt.savefig('pie_tem.png',dpi=300) | |
| 178 | |
| 179 ################################################################################################################################################################################################################### | |
| 180 | |
| 181 | |
| 182 def make_spider(merge_con,merge_tre,group_name1,group_name2): | |
| 183 | |
| 184 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_con] | |
| 185 t_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge_tre] | |
| 186 | |
| 187 c_5 = 0 | |
| 188 c_5_counts = 0 | |
| 189 c_3 = 0 | |
| 190 c_3_counts = 0 | |
| 191 c_both =0 | |
| 192 c_both_counts=0 | |
| 193 c_mature = 0 | |
| 194 c_mat_counts = 0 | |
| 195 c_exception=0 | |
| 196 c_exception_counts=0 | |
| 197 | |
| 198 | |
| 199 t_5 = 0 | |
| 200 t_5_counts = 0 | |
| 201 t_3 = 0 | |
| 202 t_3_counts = 0 | |
| 203 t_both = 0 | |
| 204 t_both_counts = 0 | |
| 205 t_mature = 0 | |
| 206 t_mat_counts = 0 | |
| 207 t_exception = 0 | |
| 208 t_exception_counts=0 | |
| 209 | |
| 210 for x in c_samples: | |
| 211 | |
| 212 if "/" not in x[0]: | |
| 213 if "chr" in x[0].split("_")[-1]: | |
| 214 c_mature+=1 | |
| 215 c_mat_counts += x[2] | |
| 216 elif 0 == int(x[0].split("_")[-1]): | |
| 217 c_5+=1 | |
| 218 c_5_counts += x[2] | |
| 219 elif 0 == int(x[0].split("_")[-2]): | |
| 220 c_3+=1 | |
| 221 c_3_counts += x[2] | |
| 222 else: | |
| 223 c_both+=1 | |
| 224 c_both_counts+=x[2] | |
| 225 | |
| 226 else: | |
| 227 f=0 | |
| 228 for y in x[0].split("/"): | |
| 229 if "chr" in y.split("_")[-1]: | |
| 230 c_mature+=1 | |
| 231 c_mat_counts += x[2] | |
| 232 f=1 | |
| 233 break | |
| 234 if f==0: | |
| 235 for y in x[0].split("/"): | |
| 236 c_exception+=1 | |
| 237 c_exception_counts += x[2] | |
| 238 | |
| 239 | |
| 240 for x in t_samples: | |
| 241 | |
| 242 if "/" not in x[0]: | |
| 243 if "chr" in x[0].split("_")[-1]: | |
| 244 t_mature+=1 | |
| 245 t_mat_counts += x[2] | |
| 246 elif 0 == int(x[0].split("_")[-1]): | |
| 247 t_5+=1 | |
| 248 t_5_counts += x[2] | |
| 249 elif 0 == int(x[0].split("_")[-2]): | |
| 250 t_3+=1 | |
| 251 t_3_counts += x[2] | |
| 252 else: | |
| 253 t_both+=1 | |
| 254 t_both_counts+=x[2] | |
| 255 | |
| 256 else: | |
| 257 f=0 | |
| 258 for y in x[0].split("/"): | |
| 259 if "chr" in y.split("_")[-1]: | |
| 260 t_mature+=1 | |
| 261 t_mat_counts += x[2] | |
| 262 f=1 | |
| 263 break | |
| 264 if f==0: | |
| 265 for y in x[0].split("/"): | |
| 266 t_exception+=1 | |
| 267 t_exception_counts += x[2] | |
| 268 | |
| 269 | |
| 270 c_all = c_5+c_3+c_both+c_mature+c_exception | |
| 271 c_all_counts = c_5_counts + c_3_counts + c_both_counts + c_mat_counts + c_exception_counts | |
| 272 | |
| 273 t_all = t_5+t_3+t_both+t_mature + t_exception | |
| 274 t_all_counts = t_5_counts + t_3_counts + t_both_counts + t_mat_counts + t_exception_counts | |
| 275 | |
| 276 c_5 = round(c_5/c_all*100,2) | |
| 277 c_3 = round(c_3/c_all*100,2) | |
| 278 c_both = round(c_both/c_all*100,2) | |
| 279 c_mature = round(c_mature/c_all*100,2) | |
| 280 c_exception = round(c_exception/c_all*100,2) | |
| 281 | |
| 282 c_5_counts = round(c_5_counts/c_all_counts*100,2) | |
| 283 c_3_counts = round(c_3_counts/c_all_counts*100,2) | |
| 284 c_both_counts = round(c_both_counts/c_all_counts*100,2) | |
| 285 c_mat_counts = round(c_mat_counts/c_all_counts*100,2) | |
| 286 c_exception_counts = round(c_exception_counts/c_all_counts*100,2) | |
| 287 | |
| 288 t_5 = round(t_5/t_all*100,2) | |
| 289 t_3 = round(t_3/t_all*100,2) | |
| 290 t_both = round(t_both/t_all*100,2) | |
| 291 t_mature = round(t_mature/t_all*100,2) | |
| 292 t_exception = round(t_exception/t_all*100,2) | |
| 293 | |
| 294 t_5_counts = round(t_5_counts/t_all_counts*100,2) | |
| 295 t_3_counts = round(t_3_counts/t_all_counts*100,2) | |
| 296 t_both_counts = round(t_both_counts/t_all_counts*100,2) | |
| 297 t_mat_counts = round(t_mat_counts/t_all_counts*100,2) | |
| 298 t_exception_counts = round(t_exception_counts/t_all_counts*100,2) | |
| 299 | |
| 300 radar_max = max(c_5, c_3, c_both,c_mature,c_exception,t_5,t_3,t_both,t_mature,t_exception) | |
| 301 radar_max_counts = max(c_5_counts,c_3_counts,c_both_counts,c_mat_counts,c_exception_counts,t_5_counts,t_3_counts,t_both_counts,t_mat_counts,t_exception_counts) | |
| 302 | |
| 303 df=pd.DataFrame({ | |
| 304 'group':[group_name1,group_name2], | |
| 305 """5'3'-isomiRs""":[c_both,t_both], | |
| 306 """3'-isomiRs""":[c_3,t_3], | |
| 307 'RefSeq miRNA':[c_mature,t_mature], | |
| 308 """5'-isomiRs""":[c_5,t_5], | |
| 309 'Others*':[c_exception,t_exception]}) | |
| 310 | |
| 311 df1=pd.DataFrame({ | |
| 312 'group':[group_name1,group_name2], | |
| 313 """5'3'-isomiRs""":[c_both_counts,t_both_counts], | |
| 314 """3'-isomiRs""":[c_3_counts,t_3_counts], | |
| 315 'RefSeq miRNA':[c_mat_counts,t_mat_counts], | |
| 316 """5'-isomiRs""":[c_5_counts,t_5_counts], | |
| 317 'Others*':[c_exception_counts,t_exception_counts]}) | |
| 318 | |
| 319 spider_last(df,radar_max,1,group_name1,group_name2) | |
| 320 spider_last(df1,radar_max_counts,2,group_name1,group_name2) | |
| 321 | |
| 322 ##################################################################################################################################################### | |
| 323 | |
| 324 def spider_last(df,radar_max,flag,group_name1,group_name2): | |
| 325 # ------- PART 1: Create background | |
| 326 fig = plt.figure() | |
| 327 # number of variable | |
| 328 categories=list(df)[1:] | |
| 329 N = len(categories) | |
| 330 | |
| 331 # What will be the angle of each axis in the plot? (we divide the plot / number of variable) | |
| 332 angles = [n / float(N) * 2 * pi for n in range(N)] | |
| 333 angles += angles[:1] | |
| 334 | |
| 335 # Initialise the spider plot | |
| 336 ax = plt.subplot(111, polar=True) | |
| 337 | |
| 338 # If you want the first axis to be on top: | |
| 339 ax.set_theta_offset(pi/2) | |
| 340 ax.set_theta_direction(-1) | |
| 341 | |
| 342 # Draw one axe per variable + add labels labels yet | |
| 343 plt.xticks(angles[:-1], categories, fontsize=11) | |
| 344 | |
| 345 # Draw ylabels | |
| 346 radar_max=round(radar_max+radar_max*0.1) | |
| 347 mul=len(str(radar_max))-1 | |
| 348 maxi=int(math.ceil(radar_max / pow(10,mul))) * pow(10,mul) | |
| 349 sep = round(maxi/4) | |
| 350 plt.yticks([sep, 2*sep, 3*sep, 4*sep, 5*sep], [str(sep)+'%', str(2*sep)+'%', str(3*sep)+'%', str(4*sep)+'%', str(5*sep)+'%'], color="grey", size=10) | |
| 351 plt.ylim(0, maxi) | |
| 352 | |
| 353 # ------- PART 2: Add plots | |
| 354 | |
| 355 # Plot each individual = each line of the data | |
| 356 # I don't do a loop, because plotting more than 3 groups makes the chart unreadable | |
| 357 | |
| 358 # Ind1 | |
| 359 values=df.loc[0].drop('group').values.flatten().tolist() | |
| 360 values += values[:1] | |
| 361 ax.plot(angles, values,'-o', linewidth=1, linestyle='solid', label=group_name1) | |
| 362 ax.fill(angles, values, 'b', alpha=0.1) | |
| 363 | |
| 364 # Ind2 | |
| 365 values=df.loc[1].drop('group').values.flatten().tolist() | |
| 366 values += values[:1] | |
| 367 ax.plot(angles, values, '-o' ,linewidth=1, linestyle='solid', label=group_name2) | |
| 368 ax.fill(angles, values, 'r', alpha=0.1) | |
| 369 | |
| 370 # Add legend | |
| 371 if flag==1: | |
| 372 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
| 373 plt.savefig('spider_non_red.png',dpi=300) | |
| 374 else: | |
| 375 plt.legend(loc='upper right', bbox_to_anchor=(0.0, 0.1)) | |
| 376 plt.savefig('spider_red.png',dpi=300) | |
| 377 | |
| 378 | |
| 379 ############################################################################################################################################################################################################# | |
| 380 | |
| 381 def hist_red(samples,flag,group_name): | |
| 382 | |
| 383 lengths=[] | |
| 384 cat=[] | |
| 385 total_reads=0 | |
| 386 seq=[] | |
| 387 | |
| 388 if flag == "c": | |
| 389 title = "Length Distribution of "+ group_name +" group (Redudant reads)" | |
| 390 if flag == "t": | |
| 391 title = "Length Distribution of "+ group_name +" group (Redudant reads)" | |
| 392 | |
| 393 # classification of the sequences on two categories mapped or unmapped | |
| 394 for i in samples: | |
| 395 for x in i: | |
| 396 lengths.append(x[3]) | |
| 397 if x[1]=="0": | |
| 398 seq.append([x[3],x[0].split("-")[1],"Mapped"]) | |
| 399 cat.append("Mapped") | |
| 400 if x[1] == "4": | |
| 401 seq.append([x[3],x[0].split("-")[1],"Unassigned"]) | |
| 402 cat.append("Unassigned") | |
| 403 | |
| 404 # Keep lengths below 35nts | |
| 405 uni_len=list(set(lengths)) | |
| 406 uni_len=[x for x in uni_len if x<=35] | |
| 407 | |
| 408 # Remove duplicates from sequences | |
| 409 seq.sort() | |
| 410 uni_seq=list(seq for seq,_ in itertools.groupby(seq)) | |
| 411 | |
| 412 # Calculation of the reads per group (mapped or unmapped) | |
| 413 total_reads+=sum([int(x[1]) for x in uni_seq]) | |
| 414 map_reads=[] | |
| 415 unmap_reads=[] | |
| 416 length=[] | |
| 417 for y in uni_len: | |
| 418 map_temp=0 | |
| 419 unmap_temp=0 | |
| 420 for x in uni_seq: | |
| 421 if x[0]==y and x[2]=="Mapped": | |
| 422 map_temp+=int(x[1]) | |
| 423 if x[0]==y and x[2]=="Unassigned": | |
| 424 unmap_temp+=int(x[1]) | |
| 425 length.append(y) | |
| 426 map_reads.append(round(map_temp/total_reads*100,2)) # percentage of mapped reads over total number of sequences | |
| 427 unmap_reads.append(round(unmap_temp/total_reads*100,2)) # percentage of unmapped reads over total number of sequences | |
| 428 | |
| 429 # Generation of the graph | |
| 430 ylim=max([sum(x) for x in zip(unmap_reads, map_reads)]) | |
| 431 ylim=ylim+ylim*20/100 | |
| 432 fig, ax = plt.subplots() | |
| 433 width=0.8 | |
| 434 ax.bar(length, unmap_reads, width, label='Unassigned') | |
| 435 h=ax.bar(length, map_reads, width, bottom=unmap_reads, label='Mapped') | |
| 436 plt.xticks(np.arange(length[0], length[-1]+1, 1)) | |
| 437 plt.yticks(np.arange(0, ylim, 5)) | |
| 438 plt.xlabel('Length (nt)',fontsize=14) | |
| 439 plt.ylabel('Percentage',fontsize=14) | |
| 440 plt.title(title,fontsize=14) | |
| 441 ax.legend() | |
| 442 plt.ylim([0, ylim]) | |
| 443 ax.grid(axis='y',linewidth=0.2) | |
| 444 | |
| 445 # Save of the graph | |
| 446 if flag=='c': | |
| 447 plt.savefig('c_hist_red.png',dpi=300) | |
| 448 | |
| 449 if flag=='t': | |
| 450 plt.savefig('t_hist_red.png',dpi=300) | |
| 451 | |
| 452 ################################################################################################################# | |
| 453 | |
| 454 def logo_seq_red(merge, flag, group_name): | |
| 455 | |
| 456 if flag=="c": | |
| 457 titlos= group_name + " group (Redundant)" | |
| 458 file_logo="c_logo.png" | |
| 459 file_bar="c_bar.png" | |
| 460 if flag=="t": | |
| 461 titlos= group_name + " group (Redundant)" | |
| 462 file_logo="t_logo.png" | |
| 463 file_bar="t_bar.png" | |
| 464 | |
| 465 c_samples=[[x[0],x[1],sum(int(i) for i in x[2:])] for x in merge] | |
| 466 | |
| 467 A=[0]*3 | |
| 468 C=[0]*3 | |
| 469 G=[0]*3 | |
| 470 T=[0]*3 | |
| 471 total_reads=0 | |
| 472 | |
| 473 for y in c_samples: | |
| 474 if "/" in y[0]: | |
| 475 length=[] | |
| 476 for x in y[0].split("/"): | |
| 477 length.append([len(x.split("_")[-1]),x.split("_")[-1],y[2]]) | |
| 478 | |
| 479 best=min(length) | |
| 480 total_reads+=best[2] | |
| 481 for i in range(3): | |
| 482 if i<len(best[1]): | |
| 483 if best[1][i] == "A": | |
| 484 A[i]+=best[2] | |
| 485 elif best[1][i] == "C": | |
| 486 C[i]+=best[2] | |
| 487 elif best[1][i] == "G": | |
| 488 G[i]+=best[2] | |
| 489 else: | |
| 490 T[i]+=best[2] | |
| 491 else: | |
| 492 total_reads+=y[2] | |
| 493 for i in range(3): | |
| 494 if i<len(y[0].split("_")[-1]): | |
| 495 if y[0].split("_")[-1][i] == "A": | |
| 496 A[i]+=(y[2]) | |
| 497 elif y[0].split("_")[-1][i] == "C": | |
| 498 C[i]+=(y[2]) | |
| 499 elif y[0].split("_")[-1][i] == "G": | |
| 500 G[i]+=(y[2]) | |
| 501 else: | |
| 502 T[i]+=y[2] | |
| 503 | |
| 504 A[:] = [round(x*100,1) / total_reads for x in A] | |
| 505 C[:] = [round(x*100,1) / total_reads for x in C] | |
| 506 G[:] = [round(x*100,1) / total_reads for x in G] | |
| 507 T[:] = [round(x*100,1) / total_reads for x in T] | |
| 508 | |
| 509 | |
| 510 | |
| 511 data = {'A':A,'C':C,'G':G,'T':T} | |
| 512 df = pd.DataFrame(data, index=[1,2,3]) | |
| 513 h=df.plot.bar(color=tuple(["g", "b","gold","r"]) ) | |
| 514 h.grid(axis='y',linewidth=0.2) | |
| 515 plt.xticks(rotation=0, ha="right") | |
| 516 plt.ylabel("Counts (%)",fontsize=18) | |
| 517 plt.xlabel("Numbers of additional nucleotides",fontsize=18) | |
| 518 plt.title(titlos,fontsize=20) | |
| 519 plt.tight_layout() | |
| 520 plt.savefig(file_bar, dpi=300) | |
| 521 | |
| 522 crp_logo = lm.Logo(df, font_name = 'DejaVu Sans') | |
| 523 crp_logo.style_spines(visible=False) | |
| 524 crp_logo.style_spines(spines=['left', 'bottom'], visible=True) | |
| 525 crp_logo.style_xticks(rotation=0, fmt='%d', anchor=0) | |
| 526 | |
| 527 # style using Axes methods | |
| 528 crp_logo.ax.set_title(titlos,fontsize=18) | |
| 529 crp_logo.ax.set_ylabel("Counts (%)", fontsize=16,labelpad=5) | |
| 530 crp_logo.ax.set_xlabel("Numbers of additional nucleotides",fontsize=16, labelpad=5) | |
| 531 crp_logo.ax.xaxis.set_ticks_position('none') | |
| 532 crp_logo.ax.xaxis.set_tick_params(pad=-1) | |
| 533 figure = plt.gcf() | |
| 534 figure.set_size_inches(6, 4) | |
| 535 crp_logo.fig.savefig(file_logo,dpi=300) | |
| 536 | |
| 537 ########################################################################################################################################################################################################## | |
| 538 | |
| 539 def pdf_before_DE(analysis,group_name1,group_name2): | |
| 540 | |
| 541 # Image extensions | |
| 542 if analysis=="2": | |
| 543 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_non.png","spider_red.png","spider_non_red.png","c_logo.png","t_logo.png","c_bar.png","t_bar.png") | |
| 544 else: | |
| 545 image_extensions = ("c_hist_red.png","t_hist_red.png","pie_tem.png","spider_red.png","spider_non_red.png") | |
| 546 # This list will hold the images file names | |
| 547 images = [] | |
| 548 | |
| 549 # Build the image list by merging the glob results (a list of files) | |
| 550 # for each extension. We are taking images from current folder. | |
| 551 for extension in image_extensions: | |
| 552 images.extend(glob.glob(extension)) | |
| 553 | |
| 554 # Create instance of FPDF class | |
| 555 pdf = FPDF('P', 'in', 'A4') | |
| 556 # Add new page. Without this you cannot create the document. | |
| 557 pdf.add_page() | |
| 558 # Set font to Arial, 'B'old, 16 pts | |
| 559 pdf.set_font('Arial', 'B', 20.0) | |
| 560 | |
| 561 # Page header | |
| 562 pdf.cell(pdf.w-0.5, 0.5, 'IsomiR Profile Report',align='C') | |
| 563 pdf.ln(0.7) | |
| 564 pdf.set_font('Arial','B', 16.0) | |
| 565 pdf.cell(pdf.w-0.5, 0.5, 'sRNA length distribution',align='C') | |
| 566 | |
| 567 # Smaller font for image captions | |
| 568 pdf.set_font('Arial', '', 11.0) | |
| 569 pdf.ln(0.5) | |
| 570 | |
| 571 yh=FPDF.get_y(pdf) | |
| 572 pdf.image(images[0],x=0.3,w=4, h=3) | |
| 573 pdf.image(images[1],x=4,y=yh, w=4, h=3) | |
| 574 pdf.ln(0.3) | |
| 575 | |
| 576 pdf.cell(0.2) | |
| 577 pdf.cell(3.0, 0.0, " Mapped and unmapped reads to custom precussor arm reference DB (5p and 3p arms) in "+group_name1) | |
| 578 pdf.ln(0.2) | |
| 579 pdf.cell(0.2) | |
| 580 pdf.cell(3.0, 0.0, " (left) and "+group_name2+" (right) groups") | |
| 581 | |
| 582 pdf.ln(0.5) | |
| 583 h1=FPDF.get_y(pdf) | |
| 584 pdf.image(images[2],x=1, w=6.5, h=5) | |
| 585 h2=FPDF.get_y(pdf) | |
| 586 FPDF.set_y(pdf,h1+0.2) | |
| 587 pdf.set_font('Arial','B', 16.0) | |
| 588 pdf.cell(pdf.w-0.5, 0.5, 'Templated and non-templated isomiRs',align='C') | |
| 589 pdf.set_font('Arial', '', 11.0) | |
| 590 FPDF.set_y(pdf,h2) | |
| 591 FPDF.set_y(pdf,9.5) | |
| 592 pdf.cell(0.2) | |
| 593 | |
| 594 if analysis=="2": | |
| 595 pdf.cell(3.0, 0.0, " RefSeq miRNAs, templated isomiRs, non-templated isomiRs and unassigned sequences as percentage") | |
| 596 pdf.ln(0.2) | |
| 597 pdf.cell(0.2) | |
| 598 pdf.cell(3.0, 0.0, " of total sRNA reads in "+group_name1+" (left) and "+group_name2+" (right) groups") | |
| 599 else: | |
| 600 pdf.cell(3.0, 0.0, " RefSeq miRNAS, Templated isomiRs and unassigned sequences as percentage of total sRNA reads in") | |
| 601 pdf.ln(0.2) | |
| 602 pdf.cell(0.2) | |
| 603 pdf.cell(3.0, 0.0, " "+group_name1+" (left) and "+group_name2 + " (right) groups") | |
| 604 | |
| 605 pdf.add_page() | |
| 606 pdf.set_font('Arial', 'B', 18.0) | |
| 607 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR subtypes",align='C') | |
| 608 pdf.ln(0.7) | |
| 609 pdf.set_font('Arial', 'B', 14.0) | |
| 610 pdf.cell(pdf.w-0.5, 0.5, "Templated isomiR profile (redundant reads)",align='C') | |
| 611 pdf.ln(0.5) | |
| 612 pdf.image(images[3],x=1.5, w=5.5, h=4) | |
| 613 pdf.ln(0.6) | |
| 614 pdf.cell(pdf.w-0.5, 0.0, "Templated isomiR profile (non-redundant reads)",align='C') | |
| 615 pdf.set_font('Arial', '', 12.0) | |
| 616 pdf.ln(0.2) | |
| 617 pdf.image(images[4],x=1.5, w=5.5, h=4) | |
| 618 pdf.ln(0.3) | |
| 619 pdf.set_font('Arial', '', 11.0) | |
| 620 pdf.cell(0.2) | |
| 621 pdf.cell(3.0, 0.0, " * IsomiRs potentially generated from multiple loci") | |
| 622 | |
| 623 | |
| 624 if analysis=="2": | |
| 625 pdf.add_page('L') | |
| 626 | |
| 627 pdf.set_font('Arial', 'B', 18.0) | |
| 628 pdf.cell(pdf.w-0.5, 0.5, "Non-templated isomiRs",align='C') | |
| 629 pdf.ln(0.5) | |
| 630 pdf.set_font('Arial', 'B', 14.0) | |
| 631 pdf.cell(pdf.w-0.5, 0.5, "3'-end additions to RefSeq miRNAs and templated isomiRs",align='C') | |
| 632 pdf.ln(0.7) | |
| 633 | |
| 634 yh=FPDF.get_y(pdf) | |
| 635 pdf.image(images[5],x=1.5,w=3.65, h=2.65) | |
| 636 pdf.image(images[7],x=6.5,y=yh, w=3.65, h=2.65) | |
| 637 pdf.ln(0.5) | |
| 638 yh=FPDF.get_y(pdf) | |
| 639 pdf.image(images[6],x=1.5,w=3.65, h=2.65) | |
| 640 pdf.image(images[8],x=6.5,y=yh, w=3.65, h=2.65) | |
| 641 | |
| 642 pdf.close() | |
| 643 pdf.output('report1.pdf','F') | |
| 644 | |
| 645 #############################################################################################################################################################3 | |
| 646 | |
| 647 |
