Mercurial > repos > goeckslab > extract_embeddings
diff pytorch_embedding.xml @ 1:84f96c952c2c draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 5b6cd961948137853177b14b0fff80a5d40e8a07
| author | goeckslab |
|---|---|
| date | Sun, 09 Nov 2025 19:03:21 +0000 |
| parents | 38333676a029 |
| children |
line wrap: on
line diff
--- a/pytorch_embedding.xml Thu Jun 19 23:33:23 2025 +0000 +++ b/pytorch_embedding.xml Sun Nov 09 19:03:21 2025 +0000 @@ -50,6 +50,7 @@ <option value="efficientnet_v2_s">EfficientNetV2-S</option> <option value="efficientnet_v2_m">EfficientNetV2-M</option> <option value="efficientnet_v2_l">EfficientNetV2-L</option> + <option value="gpfm">GPFM (Generalizable Pathology Foundation Model)</option> <option value="googlenet">GoogLeNet</option> <option value="inception_v3">Inception-V3</option> <option value="mnasnet0_5">MNASNet-0.5</option> @@ -114,20 +115,39 @@ </assert_contents> </output> </test> + <test> + <param name="input_zip" value="1_digit.zip" ftype="zip" /> + <param name="model_name" value="gpfm" /> + <param name="apply_normalization" value="true" /> + <param name="transform_type" value="RGB" /> + <output name="output_csv"> + <assert_contents> + <has_text text="sample_name" /> + <has_n_columns min="1" /> + </assert_contents> + </output> + </test> </tests> <help> <![CDATA[ **What it does** - This tool extracts image embeddings using a selected deep learning model. + This tool extracts image embeddings using a selected deep learning model, including specialized pathology models like GPFM. **Inputs** - A zip file containing images to process. - - A model selection for embedding extraction. + - A model selection for embedding extraction (includes GPFM for pathology images). - An option to apply normalization to the extracted embeddings. - A choice of image transformation type before processing. + **Models Available** + - Standard computer vision models (ResNet, EfficientNet, ViT, etc.) + - GPFM: Generalizable Pathology Foundation Model - specialized for medical/pathology images + * Automatically downloads 1.2GB pretrained weights on first use + * Uses DinoVisionTransformer architecture (1024-dimensional embeddings) + * Optimized for histopathology images at 224x224 resolution + **Outputs** - A CSV file containing embeddings. Each row corresponds to an image, with the file name in the first column and embedding vectors in the subsequent columns. ]]> </help> -</tool> +</tool> \ No newline at end of file
