Mercurial > repos > goeckslab > galaxy_pycaret
comparison dashboard.py @ 0:1bc26b9636d2 draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit 5089a5dffc154c8202624cfbd5f1be0f36a9f0cc
| author | goeckslab |
|---|---|
| date | Wed, 11 Dec 2024 03:29:00 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:1bc26b9636d2 |
|---|---|
| 1 import logging | |
| 2 from typing import Any, Dict, Optional | |
| 3 | |
| 4 from pycaret.utils.generic import get_label_encoder | |
| 5 | |
| 6 logging.basicConfig(level=logging.DEBUG) | |
| 7 LOG = logging.getLogger(__name__) | |
| 8 | |
| 9 | |
| 10 def generate_classifier_explainer_dashboard( | |
| 11 exp, | |
| 12 estimator, | |
| 13 display_format: str = "dash", | |
| 14 dashboard_kwargs: Optional[Dict[str, Any]] = None, | |
| 15 run_kwargs: Optional[Dict[str, Any]] = None, | |
| 16 **kwargs,): | |
| 17 | |
| 18 """ | |
| 19 This function is changed from pycaret.classification.oop.dashboard() | |
| 20 | |
| 21 This function generates the interactive dashboard for a trained model. | |
| 22 The dashboard is implemented using | |
| 23 ExplainerDashboard (explainerdashboard.readthedocs.io) | |
| 24 | |
| 25 | |
| 26 estimator: scikit-learn compatible object | |
| 27 Trained model object | |
| 28 | |
| 29 | |
| 30 display_format: str, default = 'dash' | |
| 31 Render mode for the dashboard. The default is set to ``dash`` | |
| 32 which will | |
| 33 render a dashboard in browser. There are four possible options: | |
| 34 | |
| 35 - 'dash' - displays the dashboard in browser | |
| 36 - 'inline' - displays the dashboard in the jupyter notebook cell. | |
| 37 - 'jupyterlab' - displays the dashboard in jupyterlab pane. | |
| 38 - 'external' - displays the dashboard in a separate tab. | |
| 39 (use in Colab) | |
| 40 | |
| 41 | |
| 42 dashboard_kwargs: dict, default = {} (empty dict) | |
| 43 Dictionary of arguments passed to the ``ExplainerDashboard`` class. | |
| 44 | |
| 45 | |
| 46 run_kwargs: dict, default = {} (empty dict) | |
| 47 Dictionary of arguments passed to the ``run`` | |
| 48 method of ``ExplainerDashboard``. | |
| 49 | |
| 50 | |
| 51 **kwargs: | |
| 52 Additional keyword arguments to pass to the ``ClassifierExplainer`` | |
| 53 or ``RegressionExplainer`` class. | |
| 54 | |
| 55 | |
| 56 Returns: | |
| 57 ExplainerDashboard | |
| 58 """ | |
| 59 | |
| 60 dashboard_kwargs = dashboard_kwargs or {} | |
| 61 run_kwargs = run_kwargs or {} | |
| 62 | |
| 63 from explainerdashboard import ClassifierExplainer, ExplainerDashboard | |
| 64 | |
| 65 le = get_label_encoder(exp.pipeline) | |
| 66 if le: | |
| 67 labels_ = list(le.classes_) | |
| 68 else: | |
| 69 labels_ = None | |
| 70 | |
| 71 # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` | |
| 72 | |
| 73 X_test_df = exp.X_test_transformed.copy() | |
| 74 LOG.info(X_test_df) | |
| 75 X_test_df.columns = [ | |
| 76 col.replace(".", "__").replace("{", "__").replace("}", "__") | |
| 77 for col in X_test_df.columns | |
| 78 ] | |
| 79 | |
| 80 explainer = ClassifierExplainer( | |
| 81 estimator, X_test_df, exp.y_test_transformed, labels=labels_, **kwargs | |
| 82 ) | |
| 83 return ExplainerDashboard( | |
| 84 explainer, mode=display_format, | |
| 85 contributions=False, whatif=False, | |
| 86 **dashboard_kwargs | |
| 87 ) | |
| 88 | |
| 89 | |
| 90 def generate_regression_explainer_dashboard( | |
| 91 exp, | |
| 92 estimator, | |
| 93 display_format: str = "dash", | |
| 94 dashboard_kwargs: Optional[Dict[str, Any]] = None, | |
| 95 run_kwargs: Optional[Dict[str, Any]] = None, | |
| 96 **kwargs,): | |
| 97 | |
| 98 """ | |
| 99 This function is changed from pycaret.regression.oop.dashboard() | |
| 100 | |
| 101 This function generates the interactive dashboard for a trained model. | |
| 102 The dashboard is implemented using ExplainerDashboard | |
| 103 (explainerdashboard.readthedocs.io) | |
| 104 | |
| 105 | |
| 106 estimator: scikit-learn compatible object | |
| 107 Trained model object | |
| 108 | |
| 109 | |
| 110 display_format: str, default = 'dash' | |
| 111 Render mode for the dashboard. The default is set to ``dash`` | |
| 112 which will | |
| 113 render a dashboard in browser. There are four possible options: | |
| 114 | |
| 115 - 'dash' - displays the dashboard in browser | |
| 116 - 'inline' - displays the dashboard in the jupyter notebook cell. | |
| 117 - 'jupyterlab' - displays the dashboard in jupyterlab pane. | |
| 118 - 'external' - displays the dashboard in a separate tab. | |
| 119 (use in Colab) | |
| 120 | |
| 121 | |
| 122 dashboard_kwargs: dict, default = {} (empty dict) | |
| 123 Dictionary of arguments passed to the ``ExplainerDashboard`` class. | |
| 124 | |
| 125 | |
| 126 run_kwargs: dict, default = {} (empty dict) | |
| 127 Dictionary of arguments passed to the ``run`` method | |
| 128 of ``ExplainerDashboard``. | |
| 129 | |
| 130 | |
| 131 **kwargs: | |
| 132 Additional keyword arguments to pass to the | |
| 133 ``ClassifierExplainer`` or | |
| 134 ``RegressionExplainer`` class. | |
| 135 | |
| 136 | |
| 137 Returns: | |
| 138 ExplainerDashboard | |
| 139 """ | |
| 140 | |
| 141 dashboard_kwargs = dashboard_kwargs or {} | |
| 142 run_kwargs = run_kwargs or {} | |
| 143 | |
| 144 from explainerdashboard import ExplainerDashboard, RegressionExplainer | |
| 145 | |
| 146 # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` | |
| 147 X_test_df = exp.X_test_transformed.copy() | |
| 148 X_test_df.columns = [ | |
| 149 col.replace(".", "__").replace("{", "__").replace("}", "__") | |
| 150 for col in X_test_df.columns | |
| 151 ] | |
| 152 explainer = RegressionExplainer( | |
| 153 estimator, X_test_df, exp.y_test_transformed, **kwargs | |
| 154 ) | |
| 155 return ExplainerDashboard( | |
| 156 explainer, mode=display_format, contributions=False, | |
| 157 whatif=False, shap_interaction=False, decision_trees=False, | |
| 158 **dashboard_kwargs | |
| 159 ) |
