Mercurial > repos > goeckslab > gate_finder
comparison gate_finder.py @ 0:6df8d6e42152 draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/vitessce commit 9b2dc921e692af8045773013d9f87d4d790e2ea1
author | goeckslab |
---|---|
date | Thu, 08 Sep 2022 17:22:53 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:6df8d6e42152 |
---|---|
1 import argparse | |
2 import json | |
3 import warnings | |
4 from pathlib import Path | |
5 | |
6 import numpy as np | |
7 import pandas as pd | |
8 from anndata import read_h5ad | |
9 from sklearn.mixture import GaussianMixture | |
10 from sklearn.preprocessing import MinMaxScaler | |
11 from vitessce import ( | |
12 AnnDataWrapper, | |
13 Component as cm, | |
14 MultiImageWrapper, | |
15 OmeTiffWrapper, | |
16 VitessceConfig, | |
17 ) | |
18 | |
19 | |
20 # Generate binarized phenotype for a gate | |
21 def get_gate_phenotype(g, d): | |
22 dd = d.copy() | |
23 dd = np.where(dd < g, 0, dd) | |
24 np.warnings.filterwarnings('ignore') | |
25 dd = np.where(dd >= g, 1, dd) | |
26 return dd | |
27 | |
28 | |
29 def get_gmm_phenotype(data): | |
30 low = np.percentile(data, 0.01) | |
31 high = np.percentile(data, 99.99) | |
32 data = np.clip(data, low, high) | |
33 | |
34 sum = np.sum(data) | |
35 median = np.median(data) | |
36 data_med = data / sum * median | |
37 | |
38 data_log = np.log1p(data_med) | |
39 data_log = data_log.reshape(-1, 1) | |
40 | |
41 scaler = MinMaxScaler(feature_range=(0, 1)) | |
42 data_norm = scaler.fit_transform(data_log) | |
43 | |
44 gmm = GaussianMixture(n_components=2) | |
45 gmm.fit(data_norm) | |
46 gate = np.mean(gmm.means_) | |
47 | |
48 return get_gate_phenotype(gate, np.ravel(data_norm)) | |
49 | |
50 | |
51 def main(inputs, output, image, anndata, masks=None): | |
52 """ | |
53 Parameter | |
54 --------- | |
55 inputs : str | |
56 File path to galaxy tool parameter. | |
57 output : str | |
58 Output folder for saving web content. | |
59 image : str | |
60 File path to the OME Tiff image. | |
61 anndata : str | |
62 File path to anndata containing phenotyping info. | |
63 masks : str | |
64 File path to the image masks. | |
65 """ | |
66 warnings.simplefilter('ignore') | |
67 | |
68 with open(inputs, 'r') as param_handler: | |
69 params = json.load(param_handler) | |
70 | |
71 marker = params['marker'].strip() | |
72 from_gate = params['from_gate'] | |
73 to_gate = params['to_gate'] | |
74 increment = params['increment'] | |
75 x_coordinate = params['x_coordinate'].strip() or 'X_centroid' | |
76 y_coordinate = params['y_coordinate'].strip() or 'Y_centroid' | |
77 | |
78 adata = read_h5ad(anndata) | |
79 | |
80 # If no raw data is available make a copy | |
81 if adata.raw is None: | |
82 adata.raw = adata | |
83 | |
84 # Copy of the raw data if it exisits | |
85 if adata.raw is not None: | |
86 adata.X = adata.raw.X | |
87 | |
88 data = pd.DataFrame( | |
89 adata.X, | |
90 columns=adata.var.index, | |
91 index=adata.obs.index | |
92 ) | |
93 marker_values = data[[marker]].values | |
94 marker_values_log = np.log1p(marker_values) | |
95 | |
96 # Identify the list of increments | |
97 gate_names = [] | |
98 for num in np.arange(from_gate, to_gate, increment): | |
99 num = round(num, 3) | |
100 key = marker + '--' + str(num) | |
101 adata.obs[key] = get_gate_phenotype(num, marker_values_log) | |
102 gate_names.append(key) | |
103 | |
104 adata.obs['GMM_auto'] = get_gmm_phenotype(marker_values) | |
105 gate_names.append('GMM_auto') | |
106 | |
107 adata.obsm['XY_coordinate'] = adata.obs[[x_coordinate, y_coordinate]].values | |
108 | |
109 vc = VitessceConfig(name=None, description=None) | |
110 dataset = vc.add_dataset() | |
111 image_wrappers = [OmeTiffWrapper(img_path=image, name='OMETIFF')] | |
112 if masks: | |
113 image_wrappers.append( | |
114 OmeTiffWrapper(img_path=masks, name='MASKS', is_bitmask=True) | |
115 ) | |
116 dataset.add_object(MultiImageWrapper(image_wrappers)) | |
117 | |
118 dataset.add_object( | |
119 AnnDataWrapper( | |
120 adata, | |
121 spatial_centroid_obsm='XY_coordinate', | |
122 cell_set_obs=gate_names, | |
123 cell_set_obs_names=[obj[0].upper() + obj[1:] for obj in gate_names], | |
124 expression_matrix="X" | |
125 ) | |
126 ) | |
127 spatial = vc.add_view(dataset, cm.SPATIAL) | |
128 cellsets = vc.add_view(dataset, cm.CELL_SETS) | |
129 status = vc.add_view(dataset, cm.STATUS) | |
130 lc = vc.add_view(dataset, cm.LAYER_CONTROLLER) | |
131 genes = vc.add_view(dataset, cm.GENES) | |
132 cell_set_sizes = vc.add_view(dataset, cm.CELL_SET_SIZES) | |
133 cell_set_expression = vc.add_view(dataset, cm.CELL_SET_EXPRESSION) | |
134 | |
135 vc.layout( | |
136 (status / genes / cell_set_expression) | |
137 | (cellsets / cell_set_sizes / lc) | |
138 | (spatial) | |
139 ) | |
140 config_dict = vc.export(to='files', base_url='http://localhost', out_dir=output) | |
141 | |
142 with open(Path(output).joinpath('config.json'), 'w') as f: | |
143 json.dump(config_dict, f, indent=4) | |
144 | |
145 | |
146 if __name__ == '__main__': | |
147 aparser = argparse.ArgumentParser() | |
148 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
149 aparser.add_argument("-e", "--output", dest="output", required=True) | |
150 aparser.add_argument("-g", "--image", dest="image", required=True) | |
151 aparser.add_argument("-a", "--anndata", dest="anndata", required=True) | |
152 aparser.add_argument("-m", "--masks", dest="masks", required=False) | |
153 | |
154 args = aparser.parse_args() | |
155 | |
156 main(args.inputs, args.output, args.image, args.anndata, args.masks) |