Mercurial > repos > goeckslab > gate_finder
view vitessce_spatial.py @ 2:764f6363e2a9 draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/vitessce commit a6714d257c45c11d999c7cc2241c89da193cae15
author | goeckslab |
---|---|
date | Fri, 10 May 2024 17:21:02 +0000 |
parents | 6df8d6e42152 |
children |
line wrap: on
line source
import argparse import json import warnings from pathlib import Path import scanpy as sc from anndata import read_h5ad from vitessce import ( AnnDataWrapper, Component as cm, MultiImageWrapper, OmeTiffWrapper, VitessceConfig, ) def main(inputs, output, image, anndata=None, masks=None): """ Parameter --------- inputs : str File path to galaxy tool parameter. output : str Output folder for saving web content. image : str File path to the OME Tiff image. anndata : str File path to anndata containing phenotyping info. masks : str File path to the image masks. """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) vc = VitessceConfig(name=None, description=None) dataset = vc.add_dataset() image_wrappers = [OmeTiffWrapper(img_path=image, name='OMETIFF')] if masks: image_wrappers.append( OmeTiffWrapper(img_path=masks, name='MASKS', is_bitmask=True) ) dataset.add_object(MultiImageWrapper(image_wrappers)) status = vc.add_view(dataset, cm.STATUS) spatial = vc.add_view(dataset, cm.SPATIAL) lc = vc.add_view(dataset, cm.LAYER_CONTROLLER) if not anndata: vc.layout(status / lc | spatial) config_dict = vc.export(to='files', base_url='http://localhost', out_dir=output) with open(Path(output).joinpath('config.json'), 'w') as f: json.dump(config_dict, f, indent=4) return adata = read_h5ad(anndata) params = params['do_phenotyping'] embedding = params['scatterplot_embeddings']['embedding'] embedding_options = params['scatterplot_embeddings']['options'] if embedding == 'umap': sc.pp.neighbors(adata, **embedding_options) sc.tl.umap(adata) mappings_obsm = 'X_umap' mappings_obsm_name = "UMAP" elif embedding == 'tsne': sc.tl.tsne(adata, **embedding_options) mappings_obsm = 'X_tsne' mappings_obsm_name = "tSNE" else: # pca sc.tl.pca(adata, **embedding_options) mappings_obsm = 'X_pca' mappings_obsm_name = "PCA" adata.obsm['XY_centroid'] = adata.obs[['X_centroid', 'Y_centroid']].values cell_set_obs = params['phenotype_factory']['phenotypes'] if not isinstance(cell_set_obs, list): cell_set_obs = [x.strip() for x in cell_set_obs.split(',')] cell_set_obs_names = [obj[0].upper() + obj[1:] for obj in cell_set_obs] dataset.add_object( AnnDataWrapper( adata, mappings_obsm=[mappings_obsm], mappings_obsm_names=[mappings_obsm_name], spatial_centroid_obsm='XY_centroid', cell_set_obs=cell_set_obs, cell_set_obs_names=cell_set_obs_names, expression_matrix="X" ) ) cellsets = vc.add_view(dataset, cm.CELL_SETS) scattorplot = vc.add_view(dataset, cm.SCATTERPLOT, mapping=mappings_obsm_name) heatmap = vc.add_view(dataset, cm.HEATMAP) genes = vc.add_view(dataset, cm.GENES) cell_set_sizes = vc.add_view(dataset, cm.CELL_SET_SIZES) cell_set_expression = vc.add_view(dataset, cm.CELL_SET_EXPRESSION) vc.layout( (status / genes / cell_set_expression) | (cellsets / lc / scattorplot) | (cell_set_sizes / heatmap / spatial) ) config_dict = vc.export(to='files', base_url='http://localhost', out_dir=output) with open(Path(output).joinpath('config.json'), 'w') as f: json.dump(config_dict, f, indent=4) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-e", "--output", dest="output", required=True) aparser.add_argument("-g", "--image", dest="image", required=True) aparser.add_argument("-a", "--anndata", dest="anndata", required=False) aparser.add_argument("-m", "--masks", dest="masks", required=False) args = aparser.parse_args() main(args.inputs, args.output, args.image, args.anndata, args.masks)