Image Classification Results

Config & Results Summary
Train/Validation Results
Test Results

Training Setup

ParameterValue
Task TypeRegression
Model Nameresnet18
Epochs10
Batch SizeAuto-selected batch size by Ludwig:
1
Fine TuneTrue
Use PretrainedTrue
Learning RateAuto-selected learning rate by Ludwig:
1e-05
Based on model architecture and training setup (e.g., fine-tuning).
See Ludwig Trainer Parameters for details.
Random Seed42
Early Stop5
Data SplitUsed user-defined split column from CSV.

Model trained using Ludwig.
If want to learn more about Ludwig default settings,please check their website(ludwig.ai).


Model Performance Summary

MetricTrainValidationTest
Loss420.75102060.30528205.5977
Mean Absolute Error17.302345.157286.0225
Mean Absolute % Error0.64160.96130.9580
Mean Squared Error420.75102060.30528205.5977
R² Score-2.1257-81.4122-10.2560
Root Mean Squared Error20.512245.390690.5848
Root Mean Squared % Error0.64160.96130.9580

Train/Validation Performance Summary

MetricTrainValidation
Loss420.75102060.3052
Mean Absolute Error17.302345.1572
Mean Absolute % Error0.64160.9613
Mean Squared Error420.75102060.3052
R² Score-2.1257-81.4122
Root Mean Squared Error20.512245.3906
Root Mean Squared % Error0.64160.9613

Training & Validation Visualizations

Learning Curves Label Loss

Test Performance Summary

MetricTest
Loss8205.5977
Mean Absolute Error86.0225
Mean Absolute % Error0.9580
Mean Squared Error8205.5977
R² Score-10.2560
Root Mean Squared Error90.5848
Root Mean Squared % Error0.9580

Predictions vs. Ground Truth

label prediction
62 4.362794
116 1.592189

Test Visualizations

Compare Performance Label