Mercurial > repos > goeckslab > image_learner
comparison MetaFormer/metaformer_stacked_cnn.py @ 11:c5150cceab47 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 0fe927b618cd4dfc87af7baaa827034cc6813225
| author | goeckslab |
|---|---|
| date | Sat, 18 Oct 2025 03:17:09 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 10:b0d893d04d4c | 11:c5150cceab47 |
|---|---|
| 1 import logging | |
| 2 import os | |
| 3 import sys | |
| 4 from typing import Dict, List, Optional | |
| 5 | |
| 6 import torch | |
| 7 import torch.nn as nn | |
| 8 | |
| 9 sys.path.insert(0, os.path.dirname(__file__)) | |
| 10 | |
| 11 logging.basicConfig( | |
| 12 level=logging.INFO, | |
| 13 format="%(asctime)s %(levelname)s %(name)s: %(message)s", | |
| 14 ) | |
| 15 logger = logging.getLogger(__name__) | |
| 16 | |
| 17 SUPPORTED_PREFIXES = ( | |
| 18 'identityformer_', | |
| 19 'randformer_', | |
| 20 'poolformerv2_', | |
| 21 'convformer_', | |
| 22 'caformer_', | |
| 23 ) | |
| 24 | |
| 25 try: | |
| 26 from metaformer_models import default_cfgs as META_DEFAULT_CFGS | |
| 27 META_MODELS_AVAILABLE = True | |
| 28 logger.info("MetaFormer models imported successfully") | |
| 29 except Exception as e: | |
| 30 META_MODELS_AVAILABLE = False | |
| 31 logger.warning(f"MetaFormer models not available: {e}") | |
| 32 | |
| 33 | |
| 34 def _resolve_metaformer_ctor(model_name: str): | |
| 35 # Prefer getattr to avoid importing every factory explicitly | |
| 36 try: | |
| 37 # Import the module itself for dynamic access | |
| 38 import metaformer_models | |
| 39 _factories = metaformer_models.__dict__ | |
| 40 if model_name in _factories and callable(_factories[model_name]): | |
| 41 return _factories[model_name] | |
| 42 except Exception: | |
| 43 pass | |
| 44 return None | |
| 45 | |
| 46 | |
| 47 class MetaFormerStackedCNN(nn.Module): | |
| 48 def __init__( | |
| 49 self, | |
| 50 height: int = 224, | |
| 51 width: int = 224, | |
| 52 num_channels: int = 3, | |
| 53 output_size: int = 128, | |
| 54 custom_model: str = "identityformer_s12", | |
| 55 use_pretrained: bool = True, | |
| 56 trainable: bool = True, | |
| 57 conv_layers: Optional[List[Dict]] = None, | |
| 58 num_conv_layers: Optional[int] = None, | |
| 59 conv_activation: str = "relu", | |
| 60 conv_dropout: float = 0.0, | |
| 61 conv_norm: Optional[str] = None, | |
| 62 conv_use_bias: bool = True, | |
| 63 fc_layers: Optional[List[Dict]] = None, | |
| 64 num_fc_layers: int = 1, | |
| 65 fc_activation: str = "relu", | |
| 66 fc_dropout: float = 0.0, | |
| 67 fc_norm: Optional[str] = None, | |
| 68 fc_use_bias: bool = True, | |
| 69 **kwargs, | |
| 70 ): | |
| 71 super().__init__() | |
| 72 logger.info("MetaFormerStackedCNN encoder instantiated") | |
| 73 logger.info(f"Using MetaFormer model: {custom_model}") | |
| 74 | |
| 75 try: | |
| 76 height = int(height) | |
| 77 width = int(width) | |
| 78 num_channels = int(num_channels) | |
| 79 except (TypeError, ValueError) as exc: | |
| 80 raise ValueError("MetaFormerStackedCNN requires integer height, width, and num_channels.") from exc | |
| 81 | |
| 82 if height <= 0 or width <= 0: | |
| 83 raise ValueError(f"MetaFormerStackedCNN received non-positive dimensions: {height}x{width}.") | |
| 84 if num_channels <= 0: | |
| 85 raise ValueError(f"MetaFormerStackedCNN requires num_channels > 0, received {num_channels}.") | |
| 86 | |
| 87 self.height = height | |
| 88 self.width = width | |
| 89 self.num_channels = num_channels | |
| 90 self.output_size = output_size | |
| 91 self.custom_model = custom_model | |
| 92 self.use_pretrained = use_pretrained | |
| 93 self.trainable = trainable | |
| 94 | |
| 95 cfg = META_DEFAULT_CFGS.get(custom_model, {}) | |
| 96 input_size = cfg.get('input_size', (3, 224, 224)) | |
| 97 if isinstance(input_size, (list, tuple)) and len(input_size) == 3: | |
| 98 expected_channels, expected_height, expected_width = input_size | |
| 99 else: | |
| 100 expected_channels, expected_height, expected_width = 3, 224, 224 | |
| 101 | |
| 102 self.expected_channels = expected_channels | |
| 103 self.expected_height = expected_height | |
| 104 self.expected_width = expected_width | |
| 105 | |
| 106 logger.info(f"Initializing MetaFormerStackedCNN with model: {custom_model}") | |
| 107 logger.info( | |
| 108 "Input: %sx%sx%s -> Output: %s (expected backbone size: %sx%s)", | |
| 109 num_channels, | |
| 110 height, | |
| 111 width, | |
| 112 output_size, | |
| 113 self.expected_height, | |
| 114 self.expected_width, | |
| 115 ) | |
| 116 | |
| 117 self.channel_adapter: Optional[nn.Conv2d] = None | |
| 118 if num_channels != self.expected_channels: | |
| 119 self.channel_adapter = nn.Conv2d( | |
| 120 num_channels, self.expected_channels, kernel_size=1, stride=1, padding=0 | |
| 121 ) | |
| 122 logger.info( | |
| 123 "Added channel adapter: %s -> %s channels", | |
| 124 num_channels, | |
| 125 self.expected_channels, | |
| 126 ) | |
| 127 | |
| 128 self.size_adapter: Optional[nn.Module] = None | |
| 129 if height != self.expected_height or width != self.expected_width: | |
| 130 self.size_adapter = nn.AdaptiveAvgPool2d((height, width)) | |
| 131 logger.info( | |
| 132 "Configured size adapter to requested input: %sx%s", | |
| 133 height, | |
| 134 width, | |
| 135 ) | |
| 136 self.backbone_adapter: Optional[nn.Module] = None | |
| 137 | |
| 138 self.backbone = self._load_metaformer_backbone() | |
| 139 self.feature_dim = self._get_feature_dim() | |
| 140 | |
| 141 self.fc_layers = self._create_fc_layers( | |
| 142 input_dim=self.feature_dim, | |
| 143 output_dim=output_size, | |
| 144 num_layers=num_fc_layers, | |
| 145 activation=fc_activation, | |
| 146 dropout=fc_dropout, | |
| 147 norm=fc_norm, | |
| 148 use_bias=fc_use_bias, | |
| 149 fc_layers_config=fc_layers, | |
| 150 ) | |
| 151 | |
| 152 if not trainable: | |
| 153 for param in self.backbone.parameters(): | |
| 154 param.requires_grad = False | |
| 155 logger.info("MetaFormer backbone frozen (trainable=False)") | |
| 156 | |
| 157 logger.info("MetaFormerStackedCNN initialized successfully") | |
| 158 | |
| 159 def _load_metaformer_backbone(self): | |
| 160 if not META_MODELS_AVAILABLE: | |
| 161 raise ImportError("MetaFormer models are not available") | |
| 162 | |
| 163 ctor = _resolve_metaformer_ctor(self.custom_model) | |
| 164 if ctor is None: | |
| 165 raise ValueError(f"Unknown MetaFormer model: {self.custom_model}") | |
| 166 | |
| 167 cfg = META_DEFAULT_CFGS.get(self.custom_model, {}) | |
| 168 weights_url = cfg.get('url') | |
| 169 # track loading | |
| 170 self._pretrained_loaded = False | |
| 171 self._loaded_weights_url: Optional[str] = None | |
| 172 if self.use_pretrained and weights_url: | |
| 173 print(f"LOADING MetaFormer pretrained weights from: {weights_url}") | |
| 174 logger.info(f"Loading pretrained weights from: {weights_url}") | |
| 175 # Ensure we log whenever the factories call torch.hub.load_state_dict_from_url | |
| 176 orig_loader = getattr(torch.hub, 'load_state_dict_from_url', None) | |
| 177 | |
| 178 def _wrapped_loader(url, *args, **kwargs): | |
| 179 print(f"DOWNLOADING weights from: {url}") | |
| 180 logger.info(f"DOWNLOADING weights from: {url}") | |
| 181 self._pretrained_loaded = True | |
| 182 self._loaded_weights_url = url | |
| 183 result = orig_loader(url, *args, **kwargs) | |
| 184 print(f"WEIGHTS DOWNLOADED successfully from: {url}") | |
| 185 return result | |
| 186 try: | |
| 187 if self.use_pretrained and orig_loader is not None: | |
| 188 torch.hub.load_state_dict_from_url = _wrapped_loader # type: ignore[attr-defined] | |
| 189 print(f"CREATING MetaFormer model: {self.custom_model} (pretrained={self.use_pretrained})") | |
| 190 try: | |
| 191 model = ctor(pretrained=self.use_pretrained, num_classes=1000) | |
| 192 print(f"MetaFormer model CREATED: {self.custom_model}") | |
| 193 except Exception as model_error: | |
| 194 if self.use_pretrained: | |
| 195 print(f"⚠ Warning: Failed to load {self.custom_model} with pretrained weights: {model_error}") | |
| 196 print("Attempting to load without pretrained weights as fallback...") | |
| 197 logger.warning(f"Failed to load {self.custom_model} with pretrained weights: {model_error}") | |
| 198 model = ctor(pretrained=False, num_classes=1000) | |
| 199 print(f"✓ Successfully loaded {self.custom_model} without pretrained weights") | |
| 200 self.use_pretrained = False # Update state to reflect actual loading | |
| 201 else: | |
| 202 raise model_error | |
| 203 finally: | |
| 204 if orig_loader is not None: | |
| 205 torch.hub.load_state_dict_from_url = orig_loader # type: ignore[attr-defined] | |
| 206 self._metaformer_weights_url = weights_url | |
| 207 if self.use_pretrained: | |
| 208 if self._pretrained_loaded: | |
| 209 print(f"MetaFormer: pretrained weights loaded from {self._loaded_weights_url}") | |
| 210 logger.info(f"MetaFormer: pretrained weights loaded from {self._loaded_weights_url}") | |
| 211 else: | |
| 212 # Warn but don't fail - weights may have failed to load but model creation succeeded | |
| 213 print("⚠ Warning: MetaFormer pretrained weights were requested but not confirmed as loaded") | |
| 214 logger.warning("MetaFormer: pretrained weights were requested but not confirmed as loaded") | |
| 215 else: | |
| 216 print(f"MetaFormer: using randomly initialized weights for {self.custom_model}") | |
| 217 logger.info(f"MetaFormer: using randomly initialized weights for {self.custom_model}") | |
| 218 logger.info(f"Loaded MetaFormer backbone: {self.custom_model} (pretrained={self.use_pretrained})") | |
| 219 return model | |
| 220 | |
| 221 def _get_feature_dim(self): | |
| 222 with torch.no_grad(): | |
| 223 dummy_input = torch.randn(1, 3, 224, 224) | |
| 224 features = self.backbone.forward_features(dummy_input) | |
| 225 feature_dim = features.shape[-1] | |
| 226 logger.info(f"MetaFormer feature dimension: {feature_dim}") | |
| 227 return feature_dim | |
| 228 | |
| 229 def _create_fc_layers(self, input_dim, output_dim, num_layers, activation, dropout, norm, use_bias, fc_layers_config): | |
| 230 layers = [] | |
| 231 if fc_layers_config: | |
| 232 current_dim = input_dim | |
| 233 for i, layer_config in enumerate(fc_layers_config): | |
| 234 layer_output_dim = layer_config.get('output_size', output_dim if i == len(fc_layers_config) - 1 else current_dim) | |
| 235 layers.append(nn.Linear(current_dim, layer_output_dim, bias=use_bias)) | |
| 236 if i < len(fc_layers_config) - 1: | |
| 237 if activation == "relu": | |
| 238 layers.append(nn.ReLU()) | |
| 239 elif activation == "tanh": | |
| 240 layers.append(nn.Tanh()) | |
| 241 elif activation == "sigmoid": | |
| 242 layers.append(nn.Sigmoid()) | |
| 243 elif activation == "leaky_relu": | |
| 244 layers.append(nn.LeakyReLU()) | |
| 245 if dropout > 0: | |
| 246 layers.append(nn.Dropout(dropout)) | |
| 247 if norm == "batch": | |
| 248 layers.append(nn.BatchNorm1d(layer_output_dim)) | |
| 249 elif norm == "layer": | |
| 250 layers.append(nn.LayerNorm(layer_output_dim)) | |
| 251 current_dim = layer_output_dim | |
| 252 else: | |
| 253 if num_layers == 1: | |
| 254 layers.append(nn.Linear(input_dim, output_dim, bias=use_bias)) | |
| 255 else: | |
| 256 intermediate_dims = [input_dim] | |
| 257 for i in range(num_layers - 1): | |
| 258 intermediate_dim = int(input_dim * (0.5 ** (i + 1))) | |
| 259 intermediate_dim = max(intermediate_dim, output_dim) | |
| 260 intermediate_dims.append(intermediate_dim) | |
| 261 intermediate_dims.append(output_dim) | |
| 262 for i in range(num_layers): | |
| 263 layers.append(nn.Linear(intermediate_dims[i], intermediate_dims[i + 1], bias=use_bias)) | |
| 264 if i < num_layers - 1: | |
| 265 if activation == "relu": | |
| 266 layers.append(nn.ReLU()) | |
| 267 elif activation == "tanh": | |
| 268 layers.append(nn.Tanh()) | |
| 269 elif activation == "sigmoid": | |
| 270 layers.append(nn.Sigmoid()) | |
| 271 elif activation == "leaky_relu": | |
| 272 layers.append(nn.LeakyReLU()) | |
| 273 if dropout > 0: | |
| 274 layers.append(nn.Dropout(dropout)) | |
| 275 if norm == "batch": | |
| 276 layers.append(nn.BatchNorm1d(intermediate_dims[i + 1])) | |
| 277 elif norm == "layer": | |
| 278 layers.append(nn.LayerNorm(intermediate_dims[i + 1])) | |
| 279 return nn.Sequential(*layers) | |
| 280 | |
| 281 def forward(self, x): | |
| 282 if x.shape[1] != self.expected_channels: | |
| 283 if ( | |
| 284 self.channel_adapter is None | |
| 285 or self.channel_adapter.in_channels != x.shape[1] | |
| 286 or self.channel_adapter.out_channels != self.expected_channels | |
| 287 ): | |
| 288 self.channel_adapter = nn.Conv2d( | |
| 289 x.shape[1], | |
| 290 self.expected_channels, | |
| 291 kernel_size=1, | |
| 292 stride=1, | |
| 293 padding=0, | |
| 294 ).to(x.device) | |
| 295 logger.info( | |
| 296 "Created dynamic channel adapter: %s -> %s channels", | |
| 297 x.shape[1], | |
| 298 self.expected_channels, | |
| 299 ) | |
| 300 x = self.channel_adapter(x) | |
| 301 | |
| 302 target_height, target_width = self.height, self.width | |
| 303 if x.shape[2] != target_height or x.shape[3] != target_width: | |
| 304 if ( | |
| 305 self.size_adapter is None | |
| 306 or getattr(self.size_adapter, "output_size", None) | |
| 307 != (target_height, target_width) | |
| 308 ): | |
| 309 self.size_adapter = nn.AdaptiveAvgPool2d( | |
| 310 (target_height, target_width) | |
| 311 ).to(x.device) | |
| 312 logger.info( | |
| 313 "Created size adapter: %sx%s -> %sx%s", | |
| 314 x.shape[2], | |
| 315 x.shape[3], | |
| 316 target_height, | |
| 317 target_width, | |
| 318 ) | |
| 319 x = self.size_adapter(x) | |
| 320 | |
| 321 if target_height != self.expected_height or target_width != self.expected_width: | |
| 322 if ( | |
| 323 self.backbone_adapter is None | |
| 324 or getattr(self.backbone_adapter, "output_size", None) | |
| 325 != (self.expected_height, self.expected_width) | |
| 326 ): | |
| 327 self.backbone_adapter = nn.AdaptiveAvgPool2d( | |
| 328 (self.expected_height, self.expected_width) | |
| 329 ).to(x.device) | |
| 330 logger.info( | |
| 331 "Aligning to MetaFormer backbone size: %sx%s", | |
| 332 self.expected_height, | |
| 333 self.expected_width, | |
| 334 ) | |
| 335 x = self.backbone_adapter(x) | |
| 336 | |
| 337 features = self.backbone.forward_features(x) | |
| 338 output = self.fc_layers(features) | |
| 339 return {'encoder_output': output} | |
| 340 | |
| 341 @property | |
| 342 def output_shape(self): | |
| 343 return [self.output_size] | |
| 344 | |
| 345 | |
| 346 def create_metaformer_stacked_cnn(model_name: str, **kwargs) -> MetaFormerStackedCNN: | |
| 347 encoder = MetaFormerStackedCNN(custom_model=model_name, **kwargs) | |
| 348 return encoder | |
| 349 | |
| 350 | |
| 351 def patch_ludwig_stacked_cnn(): | |
| 352 # Only patch Ludwig if MetaFormer models are available in this runtime | |
| 353 if not META_MODELS_AVAILABLE: | |
| 354 logger.warning("MetaFormer models unavailable; skipping Ludwig patch for stacked_cnn.") | |
| 355 return False | |
| 356 return patch_ludwig_direct() | |
| 357 | |
| 358 | |
| 359 def _is_supported_metaformer(custom_model: Optional[str]) -> bool: | |
| 360 return bool(custom_model) and custom_model.startswith(SUPPORTED_PREFIXES) | |
| 361 | |
| 362 | |
| 363 def patch_ludwig_direct(): | |
| 364 try: | |
| 365 from ludwig.encoders.image.base import Stacked2DCNN | |
| 366 original_stacked_cnn_init = Stacked2DCNN.__init__ | |
| 367 | |
| 368 def patched_stacked_cnn_init(self, *args, **kwargs): | |
| 369 custom_model = kwargs.pop("custom_model", None) | |
| 370 if custom_model is None: | |
| 371 custom_model = getattr(patch_ludwig_direct, '_metaformer_model', None) | |
| 372 | |
| 373 try: | |
| 374 if META_MODELS_AVAILABLE and _is_supported_metaformer(custom_model): | |
| 375 print(f"DETECTED MetaFormer model: {custom_model}") | |
| 376 print("MetaFormer encoder is being loaded and used.") | |
| 377 # Initialize base class to keep Ludwig internals intact | |
| 378 original_stacked_cnn_init(self, *args, **kwargs) | |
| 379 # Create our MetaFormer encoder and graft behavior | |
| 380 mf_encoder = create_metaformer_stacked_cnn(custom_model, **kwargs) | |
| 381 # ensure base attributes won't be used accidentally | |
| 382 for attr in ("conv_layers", "fc_layers", "combiner", "output_shape", "reduce_output"): | |
| 383 if hasattr(self, attr): | |
| 384 try: | |
| 385 setattr(self, attr, getattr(mf_encoder, attr, None)) | |
| 386 except Exception: | |
| 387 pass | |
| 388 self.forward = mf_encoder.forward | |
| 389 if hasattr(mf_encoder, 'backbone'): | |
| 390 self.backbone = mf_encoder.backbone | |
| 391 if hasattr(mf_encoder, 'fc_layers'): | |
| 392 self.fc_layers = mf_encoder.fc_layers | |
| 393 if hasattr(mf_encoder, 'custom_model'): | |
| 394 self.custom_model = mf_encoder.custom_model | |
| 395 # explicit confirmation logs | |
| 396 try: | |
| 397 url_info = getattr(mf_encoder, '_loaded_weights_url', None) | |
| 398 loaded_flag = getattr(mf_encoder, '_pretrained_loaded', False) | |
| 399 if loaded_flag and url_info: | |
| 400 print(f"CONFIRMED: MetaFormer '{custom_model}' using pretrained weights from: {url_info}") | |
| 401 logger.info(f"CONFIRMED: MetaFormer '{custom_model}' using pretrained weights from: {url_info}") | |
| 402 else: | |
| 403 print(f"CONFIRMED: MetaFormer '{custom_model}' using randomly initialized weights (no pretrained)") | |
| 404 logger.info(f"CONFIRMED: MetaFormer '{custom_model}' using randomly initialized weights") | |
| 405 except Exception: | |
| 406 pass | |
| 407 else: | |
| 408 original_stacked_cnn_init(self, *args, **kwargs) | |
| 409 finally: | |
| 410 if hasattr(patch_ludwig_direct, '_metaformer_model'): | |
| 411 patch_ludwig_direct._metaformer_model = None | |
| 412 | |
| 413 Stacked2DCNN.__init__ = patched_stacked_cnn_init | |
| 414 return True | |
| 415 except Exception as e: | |
| 416 logger.error(f"Failed to apply MetaFormer direct patch: {e}") | |
| 417 return False | |
| 418 | |
| 419 | |
| 420 def set_current_metaformer_model(model_name: str): | |
| 421 """Store the current MetaFormer model name for the patch to use.""" | |
| 422 setattr(patch_ludwig_direct, '_metaformer_model', model_name) | |
| 423 | |
| 424 | |
| 425 def clear_current_metaformer_model(): | |
| 426 """Remove any cached MetaFormer model hint.""" | |
| 427 if hasattr(patch_ludwig_direct, '_metaformer_model'): | |
| 428 delattr(patch_ludwig_direct, '_metaformer_model') |
