Mercurial > repos > goeckslab > image_learner
diff image_learner.xml @ 8:85e6f4b2ad18 draft
planemo upload for repository https://github.com/goeckslab/gleam.git commit 8a42eb9b33df7e1df5ad5153b380e20b910a05b6
author | goeckslab |
---|---|
date | Thu, 14 Aug 2025 14:53:10 +0000 |
parents | d2d9a931addf |
children | 9e912fce264c |
line wrap: on
line diff
--- a/image_learner.xml Fri Aug 08 13:06:28 2025 +0000 +++ b/image_learner.xml Thu Aug 14 14:53:10 2025 +0000 @@ -1,7 +1,7 @@ -<tool id="image_learner" name="Image Learner" version="0.1.1" profile="22.05"> - <description>trains and evaluates an image classification/regression model</description> +<tool id="image_learner" name="Image Learner for Classification" version="0.1.2" profile="22.05"> + <description>trains and evaluates a image classification model</description> <requirements> - <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:0.10.1</container> + <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container> </requirements> <required_files> <include path="utils.py" /> @@ -144,13 +144,14 @@ <conditional name="scratch_fine_tune"> <param name="use_pretrained" type="select" label="Use pretrained weights?" - help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> + help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. + (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> <option value="false">No</option> <option value="true" selected="true">Yes</option> </param> <when value="true"> <param name="fine_tune" type="select" label="Fine tune the encoder?" - help="Whether to fine tune the encoder(combiner and decoder will be fine-tued anyway)" > + help="Whether to fine tune the encoder(combiner and decoder will be fine-tuned anyway)" > <option value="false" >No</option> <option value="true" selected="true">Yes</option> </param> @@ -218,6 +219,7 @@ label="Test split proportion (only works if no split column in the metadata csv)" value="0.2" help="Fraction of data for testing (e.g., 0.2) train split + val split + test split should = 1."/> + <param name="threshold" type="float" value="0.5" min="0.0" max="1.0" optional="true" label="Decision Threshold (binary only)" help="Set the decision threshold for binary classification (0.0–1.0). Only applies when task is binary; default is 0.5." /> </when> <when value="false"> <!-- No additional parameters to show if the user selects 'No' --> @@ -307,8 +309,6 @@ <has_text text="Test Results" /> </assert_contents> </output> - <output name="output_report" file="expected_regression.html" compare="sim_size"/> - <output_collection name="output_pred_csv" type="list" > <element name="predictions.csv" > <assert_contents> @@ -317,18 +317,16 @@ </element> </output_collection> </test> - </tests> + </tests> <help> <![CDATA[ **What it does** -Image Learner for Classification/regression: trains and evaluates a image classification/regression model. +Image Learner for Classification: trains and evaluates a image classification model. It uses the metadata csv to find the image paths and labels. The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'. Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test). If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default. -**If the selected label column has more than 10 unique values, the tool will automatically treat the task as a regression problem and apply appropriate metrics (e.g., MSE, RMSE, R²).** - **Outputs** The tool will output a trained model in the form of a ludwig_model file,