Mercurial > repos > goeckslab > image_learner
diff image_learner.xml @ 9:9e912fce264c draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit eace0d7c2b2939029c052991d238a54947d2e191
author | goeckslab |
---|---|
date | Wed, 27 Aug 2025 21:02:48 +0000 |
parents | 85e6f4b2ad18 |
children |
line wrap: on
line diff
--- a/image_learner.xml Thu Aug 14 14:53:10 2025 +0000 +++ b/image_learner.xml Wed Aug 27 21:02:48 2025 +0000 @@ -1,5 +1,5 @@ -<tool id="image_learner" name="Image Learner for Classification" version="0.1.2" profile="22.05"> - <description>trains and evaluates a image classification model</description> +<tool id="image_learner" name="Image Learner" version="0.1.2" profile="22.05"> + <description>trains and evaluates an image classification/regression model</description> <requirements> <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container> </requirements> @@ -46,6 +46,9 @@ --batch-size "$batch_size" #end if --split-probabilities "$train_split" "$val_split" "$test_split" + #if $threshold + --threshold "$threshold" + #end if #end if #if $augmentation --augmentation "$augmentation" @@ -144,8 +147,7 @@ <conditional name="scratch_fine_tune"> <param name="use_pretrained" type="select" label="Use pretrained weights?" - help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. - (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> + help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> <option value="false">No</option> <option value="true" selected="true">Yes</option> </param> @@ -317,16 +319,17 @@ </element> </output_collection> </test> - </tests> + </tests> <help> <![CDATA[ **What it does** -Image Learner for Classification: trains and evaluates a image classification model. +Image Learner for Classification/regression: trains and evaluates a image classification/regression model. It uses the metadata csv to find the image paths and labels. The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'. Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test). If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default. +**If the selected label column has more than 10 unique values, the tool will automatically treat the task as a regression problem and apply appropriate metrics (e.g., MSE, RMSE, R²).** **Outputs** The tool will output a trained model in the form of a ludwig_model file,