diff MetaFormer/metaformer_models.py @ 11:c5150cceab47 draft default tip

planemo upload for repository https://github.com/goeckslab/gleam.git commit 0fe927b618cd4dfc87af7baaa827034cc6813225
author goeckslab
date Sat, 18 Oct 2025 03:17:09 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MetaFormer/metaformer_models.py	Sat Oct 18 03:17:09 2025 +0000
@@ -0,0 +1,1426 @@
+"""
+MetaFormer baselines including IdentityFormer, RandFormer, PoolFormerV2,
+ConvFormer and CAFormer.
+Standalone implementation for Galaxy Image Learner tool (no timm dependency).
+"""
+import logging
+from functools import partial
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.init import trunc_normal_  # use torch's built-in truncated normal
+
+logger = logging.getLogger(__name__)
+
+
+def to_2tuple(v):
+    if isinstance(v, (list, tuple)):
+        return tuple(v)
+    return (v, v)
+
+
+class DropPath(nn.Module):
+    def __init__(self, drop_prob: float = 0.0):
+        super().__init__()
+        self.drop_prob = float(drop_prob)
+
+    def forward(self, x):
+        if self.drop_prob == 0.0 or not self.training:
+            return x
+        keep_prob = 1.0 - self.drop_prob
+        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
+        random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
+        random_tensor.floor_()
+        return x.div(keep_prob) * random_tensor
+
+
+# ImageNet normalization constants
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def register_model(fn):
+    # no-op decorator to mirror timm API without dependency
+    return fn
+
+
+def _cfg(url: str = '', **kwargs):
+    return {
+        'url': url,
+        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
+        'crop_pct': 1.0, 'interpolation': 'bicubic',
+        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
+        **kwargs
+    }
+
+
+default_cfgs = {
+    'identityformer_s12': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/identityformer/identityformer_s12.pth'),
+    'identityformer_s24': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/identityformer/identityformer_s24.pth'),
+    'identityformer_s36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/identityformer/identityformer_s36.pth'),
+    'identityformer_m36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/identityformer/identityformer_m36.pth'),
+    'identityformer_m48': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/identityformer/identityformer_m48.pth'),
+
+    'randformer_s12': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/randformer/randformer_s12.pth'),
+    'randformer_s24': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/randformer/randformer_s24.pth'),
+    'randformer_s36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/randformer/randformer_s36.pth'),
+    'randformer_m36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/randformer/randformer_m36.pth'),
+    'randformer_m48': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/randformer/randformer_m48.pth'),
+
+    'poolformerv2_s12': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/poolformerv2/poolformerv2_s12.pth'),
+    'poolformerv2_s24': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/poolformerv2/poolformerv2_s24.pth'),
+    'poolformerv2_s36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/poolformerv2/poolformerv2_s36.pth'),
+    'poolformerv2_m36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/poolformerv2/poolformerv2_m36.pth'),
+    'poolformerv2_m48': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/poolformerv2/poolformerv2_m48.pth'),
+
+    'convformer_s18': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s18.pth'),
+    'convformer_s18_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s18_384.pth',
+        input_size=(3, 384, 384)),
+    'convformer_s18_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s18_in21ft1k.pth'),
+    'convformer_s18_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s18_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'convformer_s18_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s18_in21k.pth',
+        num_classes=21841),
+
+    'convformer_s36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s36.pth'),
+    'convformer_s36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s36_384.pth',
+        input_size=(3, 384, 384)),
+    'convformer_s36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s36_in21ft1k.pth'),
+    'convformer_s36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'convformer_s36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_s36_in21k.pth',
+        num_classes=21841),
+
+    'convformer_m36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_m36.pth'),
+    'convformer_m36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_m36_384.pth',
+        input_size=(3, 384, 384)),
+    'convformer_m36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_m36_in21ft1k.pth'),
+    'convformer_m36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_m36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'convformer_m36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_m36_in21k.pth',
+        num_classes=21841),
+
+    'convformer_b36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_b36.pth'),
+    'convformer_b36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_b36_384.pth',
+        input_size=(3, 384, 384)),
+    'convformer_b36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_b36_in21ft1k.pth'),
+    'convformer_b36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_b36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'convformer_b36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/convformer/convformer_b36_in21k.pth',
+        num_classes=21841),
+
+    'caformer_s18': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s18.pth'),
+    'caformer_s18_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s18_384.pth',
+        input_size=(3, 384, 384)),
+    'caformer_s18_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s18_in21ft1k.pth'),
+    'caformer_s18_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s18_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'caformer_s18_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s18_in21k.pth',
+        num_classes=21841),
+
+    'caformer_s36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s36.pth'),
+    'caformer_s36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s36_384.pth',
+        input_size=(3, 384, 384)),
+    'caformer_s36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s36_in21ft1k.pth'),
+    'caformer_s36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'caformer_s36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_s36_in21k.pth',
+        num_classes=21841),
+
+    'caformer_m36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_m36.pth'),
+    'caformer_m36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_m36_384.pth',
+        input_size=(3, 384, 384)),
+    'caformer_m36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_m36_in21ft1k.pth'),
+    'caformer_m36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_m36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'caformer_m36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_m36_in21k.pth',
+        num_classes=21841),
+
+    'caformer_b36': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_b36.pth'),
+    'caformer_b36_384': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_b36_384.pth',
+        input_size=(3, 384, 384)),
+    'caformer_b36_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_b36_in21ft1k.pth'),
+    'caformer_b36_384_in21ft1k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_b36_384_in21ft1k.pth',
+        input_size=(3, 384, 384)),
+    'caformer_b36_in21k': _cfg(
+        url='https://huggingface.co/sail/dl/resolve/main/caformer/caformer_b36_in21k.pth',
+        num_classes=21841),
+}
+
+
+class Downsampling(nn.Module):
+    """Downsampling implemented by a layer of convolution."""
+    def __init__(self, in_channels, out_channels,
+                 kernel_size, stride=1, padding=0,
+                 pre_norm=None, post_norm=None, pre_permute=False):
+        super().__init__()
+        self.pre_norm = pre_norm(in_channels) if pre_norm else nn.Identity()
+        self.pre_permute = pre_permute
+        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
+                              stride=stride, padding=padding)
+        self.post_norm = post_norm(out_channels) if post_norm else nn.Identity()
+
+    def forward(self, x):
+        x = self.pre_norm(x)
+        if self.pre_permute:
+            x = x.permute(0, 3, 1, 2)
+        x = self.conv(x)
+        x = x.permute(0, 2, 3, 1)
+        x = self.post_norm(x)
+        return x
+
+
+class Scale(nn.Module):
+    """Scale vector by element multiplications."""
+    def __init__(self, dim, init_value=1.0, trainable=True):
+        super().__init__()
+        self.scale = nn.Parameter(init_value * torch.ones(dim), requires_grad=trainable)
+
+    def forward(self, x):
+        return x * self.scale
+
+
+class SquaredReLU(nn.Module):
+    """Squared ReLU: https://arxiv.org/abs/2109.08668"""
+    def __init__(self, inplace=False):
+        super().__init__()
+        self.relu = nn.ReLU(inplace=inplace)
+
+    def forward(self, x):
+        return torch.square(self.relu(x))
+
+
+class StarReLU(nn.Module):
+    """StarReLU: s * relu(x) ** 2 + b"""
+    def __init__(self, scale_value=1.0, bias_value=0.0,
+                 scale_learnable=True, bias_learnable=True,
+                 mode=None, inplace=False):
+        super().__init__()
+        self.inplace = inplace
+        self.relu = nn.ReLU(inplace=inplace)
+        self.scale = nn.Parameter(scale_value * torch.ones(1),
+                                  requires_grad=scale_learnable)
+        self.bias = nn.Parameter(bias_value * torch.ones(1),
+                                 requires_grad=bias_learnable)
+
+    def forward(self, x):
+        return self.scale * self.relu(x) ** 2 + self.bias
+
+
+class Attention(nn.Module):
+    """Vanilla self-attention from Transformer."""
+    def __init__(self, dim, head_dim=32, num_heads=None, qkv_bias=False,
+                 attn_drop=0., proj_drop=0., proj_bias=False, **kwargs):
+        super().__init__()
+
+        self.head_dim = head_dim
+        self.scale = head_dim ** -0.5
+
+        self.num_heads = num_heads if num_heads else dim // head_dim
+        if self.num_heads == 0:
+            self.num_heads = 1
+
+        self.attention_dim = self.num_heads * self.head_dim
+        self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias)
+        self.attn_drop = nn.Dropout(attn_drop)
+        self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias)
+        self.proj_drop = nn.Dropout(proj_drop)
+
+    def forward(self, x):
+        B, H, W, C = x.shape
+        N = H * W
+        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
+        q, k, v = qkv.unbind(0)
+        attn = (q @ k.transpose(-2, -1)) * self.scale
+        attn = attn.softmax(dim=-1)
+        attn = self.attn_drop(attn)
+        x = (attn @ v).transpose(1, 2).reshape(B, H, W, self.attention_dim)
+        x = self.proj(x)
+        x = self.proj_drop(x)
+        return x
+
+
+class RandomMixing(nn.Module):
+    def __init__(self, num_tokens=196, **kwargs):
+        super().__init__()
+        self.num_tokens = num_tokens
+        base_matrix = torch.softmax(torch.rand(num_tokens, num_tokens), dim=-1)
+        self.register_buffer("random_matrix", base_matrix, persistent=True)
+
+    def forward(self, x):
+        B, H, W, C = x.shape
+        actual_tokens = H * W
+
+        if actual_tokens == self.random_matrix.shape[0]:
+            mixing = self.random_matrix
+        else:
+            base = self.random_matrix
+            if base.device != x.device:
+                base = base.to(x.device)
+            resized = F.interpolate(
+                base.unsqueeze(0).unsqueeze(0),
+                size=(actual_tokens, actual_tokens),
+                mode='bilinear',
+                align_corners=False,
+            ).squeeze(0).squeeze(0)
+            mixing = torch.softmax(resized, dim=-1)
+
+        x = x.reshape(B, actual_tokens, C)
+        x = torch.einsum('mn, bnc -> bmc', mixing, x)
+        x = x.reshape(B, H, W, C)
+        return x
+
+
+class LayerNormGeneral(nn.Module):
+    """General LayerNorm for different situations."""
+    def __init__(self, affine_shape=None, normalized_dim=(-1,), scale=True,
+                 bias=True, eps=1e-5):
+        super().__init__()
+        self.normalized_dim = normalized_dim
+        self.use_scale = scale
+        self.use_bias = bias
+        self.weight = nn.Parameter(torch.ones(affine_shape)) if scale else None
+        self.bias = nn.Parameter(torch.zeros(affine_shape)) if bias else None
+        self.eps = eps
+
+    def forward(self, x):
+        c = x - x.mean(self.normalized_dim, keepdim=True)
+        s = c.pow(2).mean(self.normalized_dim, keepdim=True)
+        x = c / torch.sqrt(s + self.eps)
+        if self.use_scale:
+            x = x * self.weight
+        if self.use_bias:
+            x = x + self.bias
+        return x
+
+
+class LayerNormWithoutBias(nn.Module):
+    """Equal to partial(LayerNormGeneral, bias=False) but faster."""
+    def __init__(self, normalized_shape, eps=1e-5, **kwargs):
+        super().__init__()
+        self.eps = eps
+        self.bias = None
+        if isinstance(normalized_shape, int):
+            normalized_shape = (normalized_shape,)
+        self.weight = nn.Parameter(torch.ones(normalized_shape))
+        self.normalized_shape = normalized_shape
+
+    def forward(self, x):
+        return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
+
+
+class SepConv(nn.Module):
+    """Inverted separable convolution from MobileNetV2."""
+    def __init__(self, dim, expansion_ratio=2,
+                 act1_layer=StarReLU, act2_layer=nn.Identity,
+                 bias=False, kernel_size=7, padding=3,
+                 **kwargs):
+        super().__init__()
+        med_channels = int(expansion_ratio * dim)
+        self.pwconv1 = nn.Linear(dim, med_channels, bias=bias)
+        self.act1 = act1_layer()
+        self.dwconv = nn.Conv2d(
+            med_channels, med_channels, kernel_size=kernel_size,
+            padding=padding, groups=med_channels, bias=bias)
+        self.act2 = act2_layer()
+        self.pwconv2 = nn.Linear(med_channels, dim, bias=bias)
+
+    def forward(self, x):
+        x = self.pwconv1(x)
+        x = self.act1(x)
+        x = x.permute(0, 3, 1, 2)
+        x = self.dwconv(x)
+        x = x.permute(0, 2, 3, 1)
+        x = self.act2(x)
+        x = self.pwconv2(x)
+        return x
+
+
+class Pooling(nn.Module):
+    """Pooling for PoolFormer."""
+    def __init__(self, pool_size=3, **kwargs):
+        super().__init__()
+        self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
+
+    def forward(self, x):
+        y = x.permute(0, 3, 1, 2)
+        y = self.pool(y)
+        y = y.permute(0, 2, 3, 1)
+        return y - x
+
+
+class Mlp(nn.Module):
+    """ MLP used in MetaFormer models."""
+    def __init__(self, dim, mlp_ratio=4, out_features=None, act_layer=StarReLU, drop=0., bias=False, **kwargs):
+        super().__init__()
+        in_features = dim
+        out_features = out_features or in_features
+        hidden_features = int(mlp_ratio * in_features)
+        drop_probs = to_2tuple(drop)
+
+        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
+        self.act = act_layer()
+        self.drop1 = nn.Dropout(drop_probs[0])
+        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
+        self.drop2 = nn.Dropout(drop_probs[1])
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.act(x)
+        x = self.drop1(x)
+        x = self.fc2(x)
+        x = self.drop2(x)
+        return x
+
+
+class MlpHead(nn.Module):
+    def __init__(self, dim, num_classes=1000, mlp_ratio=4, act_layer=SquaredReLU,
+                 norm_layer=nn.LayerNorm, head_dropout=0., bias=True):
+        super().__init__()
+        hidden_features = int(mlp_ratio * dim)
+        self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
+        self.act = act_layer()
+        self.norm = norm_layer(hidden_features)
+        self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
+        self.head_dropout = nn.Dropout(head_dropout)
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.act(x)
+        x = self.norm(x)
+        x = self.head_dropout(x)
+        x = self.fc2(x)
+        return x
+
+
+class MetaFormerBlock(nn.Module):
+    def __init__(self, dim,
+                 token_mixer=nn.Identity, mlp=Mlp,
+                 norm_layer=nn.LayerNorm,
+                 drop=0., drop_path=0.,
+                 layer_scale_init_value=None, res_scale_init_value=None):
+        super().__init__()
+        self.norm1 = norm_layer(dim)
+        self.token_mixer = token_mixer(dim=dim, drop=drop)
+        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+        self.layer_scale1 = Scale(dim=dim, init_value=layer_scale_init_value) if layer_scale_init_value else nn.Identity()
+        self.res_scale1 = Scale(dim=dim, init_value=res_scale_init_value) if res_scale_init_value else nn.Identity()
+
+        self.norm2 = norm_layer(dim)
+        self.mlp = mlp(dim=dim, drop=drop)
+        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+        self.layer_scale2 = Scale(dim=dim, init_value=layer_scale_init_value) if layer_scale_init_value else nn.Identity()
+        self.res_scale2 = Scale(dim=dim, init_value=res_scale_init_value) if res_scale_init_value else nn.Identity()
+
+    def forward(self, x):
+        x = self.res_scale1(x) + self.layer_scale1(self.drop_path1(self.token_mixer(self.norm1(x))))
+        x = self.res_scale2(x) + self.layer_scale2(self.drop_path2(self.mlp(self.norm2(x))))
+        return x
+
+
+DOWNSAMPLE_LAYERS_FOUR_STAGES = [partial(Downsampling,
+                                         kernel_size=7, stride=4, padding=2,
+                                         post_norm=partial(LayerNormGeneral, bias=False, eps=1e-6)
+                                         )] + \
+                                [partial(Downsampling,
+                                         kernel_size=3, stride=2, padding=1,
+                                         pre_norm=partial(LayerNormGeneral, bias=False, eps=1e-6), pre_permute=True
+                                         )] * 3
+
+
+class MetaFormer(nn.Module):
+    def __init__(self, in_chans=3, num_classes=1000,
+                 depths=[2, 2, 6, 2],
+                 dims=[64, 128, 320, 512],
+                 downsample_layers=DOWNSAMPLE_LAYERS_FOUR_STAGES,
+                 token_mixers=nn.Identity,
+                 mlps=Mlp,
+                 norm_layers=partial(LayerNormWithoutBias, eps=1e-6),
+                 drop_path_rate=0.,
+                 head_dropout=0.0,
+                 layer_scale_init_values=None,
+                 res_scale_init_values=[None, None, 1.0, 1.0],
+                 output_norm=partial(nn.LayerNorm, eps=1e-6),
+                 head_fn=nn.Linear,
+                 **kwargs):
+        super().__init__()
+        self.num_classes = num_classes
+
+        if not isinstance(depths, (list, tuple)):
+            depths = [depths]
+        if not isinstance(dims, (list, tuple)):
+            dims = [dims]
+
+        num_stage = len(depths)
+        self.num_stage = num_stage
+
+        if not isinstance(downsample_layers, (list, tuple)):
+            downsample_layers = [downsample_layers] * num_stage
+        down_dims = [in_chans] + dims
+        self.downsample_layers = nn.ModuleList(
+            [downsample_layers[i](down_dims[i], down_dims[i + 1]) for i in range(num_stage)]
+        )
+
+        if not isinstance(token_mixers, (list, tuple)):
+            token_mixers = [token_mixers] * num_stage
+        if not isinstance(mlps, (list, tuple)):
+            mlps = [mlps] * num_stage
+        if not isinstance(norm_layers, (list, tuple)):
+            norm_layers = [norm_layers] * num_stage
+
+        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
+
+        if not isinstance(layer_scale_init_values, (list, tuple)):
+            layer_scale_init_values = [layer_scale_init_values] * num_stage
+        if not isinstance(res_scale_init_values, (list, tuple)):
+            res_scale_init_values = [res_scale_init_values] * num_stage
+
+        self.stages = nn.ModuleList()
+        cur = 0
+        for i in range(num_stage):
+            stage = nn.Sequential(
+                *[MetaFormerBlock(dim=dims[i],
+                                  token_mixer=token_mixers[i],
+                                  mlp=mlps[i],
+                                  norm_layer=norm_layers[i],
+                                  drop_path=dp_rates[cur + j],
+                                  layer_scale_init_value=layer_scale_init_values[i],
+                                  res_scale_init_value=res_scale_init_values[i])
+                  for j in range(depths[i])]
+            )
+            self.stages.append(stage)
+            cur += depths[i]
+
+        self.norm = output_norm(dims[-1])
+        self.head = head_fn(dims[-1], num_classes) if head_dropout <= 0.0 else head_fn(dims[-1], num_classes, head_dropout=head_dropout)
+        self.apply(self._init_weights)
+
+    def _init_weights(self, m):
+        if isinstance(m, (nn.Conv2d, nn.Linear)):
+            trunc_normal_(m.weight, std=.02)
+            if m.bias is not None:
+                nn.init.constant_(m.bias, 0)
+
+    @torch.jit.ignore
+    def no_weight_decay(self):
+        return {'norm'}
+
+    def forward_features(self, x):
+        for i in range(self.num_stage):
+            x = self.downsample_layers[i](x)
+            x = self.stages[i](x)
+        return self.norm(x.mean([1, 2]))
+
+    def forward(self, x):
+        x = self.forward_features(x)
+        x = self.head(x)
+        return x
+
+
+# ---- Model factory functions (subset, extend as needed) ----
+
+@register_model
+def identityformer_s12(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[2, 2, 6, 2],
+        dims=[64, 128, 320, 512],
+        token_mixers=nn.Identity,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['identityformer_s12']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def identityformer_s24(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[4, 4, 12, 4],
+        dims=[64, 128, 320, 512],
+        token_mixers=nn.Identity,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['identityformer_s24']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def identityformer_s36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[64, 128, 320, 512],
+        token_mixers=nn.Identity,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['identityformer_s36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def identityformer_m36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[96, 192, 384, 768],
+        token_mixers=nn.Identity,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['identityformer_m36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def identityformer_m48(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[8, 8, 24, 8],
+        dims=[96, 192, 384, 768],
+        token_mixers=nn.Identity,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['identityformer_m48']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def randformer_s12(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[2, 2, 6, 2],
+        dims=[64, 128, 320, 512],
+        token_mixers=[nn.Identity, nn.Identity, RandomMixing, partial(RandomMixing, num_tokens=49)],
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['randformer_s12']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def randformer_s24(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[4, 4, 12, 4],
+        dims=[64, 128, 320, 512],
+        token_mixers=[nn.Identity, nn.Identity, RandomMixing, partial(RandomMixing, num_tokens=49)],
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['randformer_s24']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def randformer_s36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[64, 128, 320, 512],
+        token_mixers=[nn.Identity, nn.Identity, RandomMixing, partial(RandomMixing, num_tokens=49)],
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['randformer_s36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def randformer_m36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[96, 192, 384, 768],
+        token_mixers=[nn.Identity, nn.Identity, RandomMixing, partial(RandomMixing, num_tokens=49)],
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['randformer_m36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def randformer_m48(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[8, 8, 24, 8],
+        dims=[96, 192, 384, 768],
+        token_mixers=[nn.Identity, nn.Identity, RandomMixing, partial(RandomMixing, num_tokens=49)],
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['randformer_m48']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def poolformerv2_s12(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[2, 2, 6, 2],
+        dims=[64, 128, 320, 512],
+        token_mixers=Pooling,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['poolformerv2_s12']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def poolformerv2_s24(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[4, 4, 12, 4],
+        dims=[64, 128, 320, 512],
+        token_mixers=Pooling,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['poolformerv2_s24']
+    if pretrained:
+        try:
+            logger.info("Loading pretrained weights for poolformerv2_s24 from: %s", model.default_cfg['url'])
+
+            # Add timeout to prevent hanging in CI environments
+            import socket
+            original_timeout = socket.getdefaulttimeout()
+            socket.setdefaulttimeout(60)  # 60 second timeout
+            try:
+                state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+                model.load_state_dict(state_dict)
+                print("✓ Successfully loaded pretrained weights for poolformerv2_s24")
+            finally:
+                socket.setdefaulttimeout(original_timeout)
+        except Exception as e:
+            logger.warning("Failed to load pretrained weights for poolformerv2_s24: %s", e)
+            logger.info("Continuing with randomly initialized weights...")
+    return model
+
+
+@register_model
+def poolformerv2_s36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[64, 128, 320, 512],
+        token_mixers=Pooling,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['poolformerv2_s36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def poolformerv2_m36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[6, 6, 18, 6],
+        dims=[96, 192, 384, 768],
+        token_mixers=Pooling,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['poolformerv2_m36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def poolformerv2_m48(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[8, 8, 24, 8],
+        dims=[96, 192, 384, 768],
+        token_mixers=Pooling,
+        norm_layers=partial(LayerNormGeneral, normalized_dim=(1, 2, 3), eps=1e-6, bias=False),
+        **kwargs)
+    model.default_cfg = default_cfgs['poolformerv2_m48']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s18(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s18']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s18_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s18_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s18_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s18_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s18_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s18_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s18_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s18_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_s36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_s36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_m36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_m36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_m36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_m36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_m36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_m36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_m36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_m36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_m36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_m36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_b36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_b36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_b36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_b36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_b36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_b36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_b36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_b36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def convformer_b36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=SepConv,
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['convformer_b36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s18(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s18']
+    if pretrained:
+        try:
+            print(f"Loading pretrained weights for caformer_s18 from: {model.default_cfg['url']}")
+            # Add timeout to prevent hanging in CI environments
+            import socket
+            original_timeout = socket.getdefaulttimeout()
+            socket.setdefaulttimeout(60)  # 60 second timeout
+            try:
+                state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+                model.load_state_dict(state_dict)
+                print("✓ Successfully loaded pretrained weights for caformer_s18")
+            finally:
+                socket.setdefaulttimeout(original_timeout)
+        except Exception as e:
+            print(f"⚠ Warning: Failed to load pretrained weights for caformer_s18: {e}")
+            print("Continuing with randomly initialized weights...")
+    return model
+
+
+@register_model
+def caformer_s18_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s18_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s18_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s18_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s18_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s18_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s18_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 3, 9, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s18_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_s36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[64, 128, 320, 512],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_s36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_m36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_m36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_m36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_m36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_m36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_m36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_m36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_m36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_m36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[96, 192, 384, 576],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_m36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_b36(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_b36']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_b36_384(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_b36_384']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_b36_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_b36_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_b36_384_in21ft1k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_b36_384_in21ft1k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model
+
+
+@register_model
+def caformer_b36_in21k(pretrained=False, **kwargs):
+    model = MetaFormer(
+        depths=[3, 12, 18, 3],
+        dims=[128, 256, 512, 768],
+        token_mixers=[SepConv, SepConv, Attention, Attention],
+        head_fn=MlpHead,
+        **kwargs)
+    model.default_cfg = default_cfgs['caformer_b36_in21k']
+    if pretrained:
+        state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
+        model.load_state_dict(state_dict)
+    return model