Mercurial > repos > goeckslab > image_learner
view constants.py @ 3:2c3a3dfaf1a9 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 5ab02b6688c9af85525dd225134db8f2bbed76ed
author | goeckslab |
---|---|
date | Fri, 04 Jul 2025 03:44:56 +0000 |
parents | 186424a7eca7 |
children |
line wrap: on
line source
from typing import Any, Dict # --- Constants --- SPLIT_COLUMN_NAME = "split" LABEL_COLUMN_NAME = "label" IMAGE_PATH_COLUMN_NAME = "image_path" DEFAULT_SPLIT_PROBABILITIES = [0.7, 0.1, 0.2] TEMP_CSV_FILENAME = "processed_data_for_ludwig.csv" TEMP_CONFIG_FILENAME = "ludwig_config.yaml" TEMP_DIR_PREFIX = "ludwig_api_work_" MODEL_ENCODER_TEMPLATES: Dict[str, Any] = { "stacked_cnn": "stacked_cnn", "resnet18": {"type": "resnet", "model_variant": 18}, "resnet34": {"type": "resnet", "model_variant": 34}, "resnet50": {"type": "resnet", "model_variant": 50}, "resnet101": {"type": "resnet", "model_variant": 101}, "resnet152": {"type": "resnet", "model_variant": 152}, "resnext50_32x4d": {"type": "resnext", "model_variant": "50_32x4d"}, "resnext101_32x8d": {"type": "resnext", "model_variant": "101_32x8d"}, "resnext101_64x4d": {"type": "resnext", "model_variant": "101_64x4d"}, "resnext152_32x8d": {"type": "resnext", "model_variant": "152_32x8d"}, "wide_resnet50_2": {"type": "wide_resnet", "model_variant": "50_2"}, "wide_resnet101_2": {"type": "wide_resnet", "model_variant": "101_2"}, "wide_resnet103_2": {"type": "wide_resnet", "model_variant": "103_2"}, "efficientnet_b0": {"type": "efficientnet", "model_variant": "b0"}, "efficientnet_b1": {"type": "efficientnet", "model_variant": "b1"}, "efficientnet_b2": {"type": "efficientnet", "model_variant": "b2"}, "efficientnet_b3": {"type": "efficientnet", "model_variant": "b3"}, "efficientnet_b4": {"type": "efficientnet", "model_variant": "b4"}, "efficientnet_b5": {"type": "efficientnet", "model_variant": "b5"}, "efficientnet_b6": {"type": "efficientnet", "model_variant": "b6"}, "efficientnet_b7": {"type": "efficientnet", "model_variant": "b7"}, "efficientnet_v2_s": {"type": "efficientnet", "model_variant": "v2_s"}, "efficientnet_v2_m": {"type": "efficientnet", "model_variant": "v2_m"}, "efficientnet_v2_l": {"type": "efficientnet", "model_variant": "v2_l"}, "regnet_y_400mf": {"type": "regnet", "model_variant": "y_400mf"}, "regnet_y_800mf": {"type": "regnet", "model_variant": "y_800mf"}, "regnet_y_1_6gf": {"type": "regnet", "model_variant": "y_1_6gf"}, "regnet_y_3_2gf": {"type": "regnet", "model_variant": "y_3_2gf"}, "regnet_y_8gf": {"type": "regnet", "model_variant": "y_8gf"}, "regnet_y_16gf": {"type": "regnet", "model_variant": "y_16gf"}, "regnet_y_32gf": {"type": "regnet", "model_variant": "y_32gf"}, "regnet_y_128gf": {"type": "regnet", "model_variant": "y_128gf"}, "regnet_x_400mf": {"type": "regnet", "model_variant": "x_400mf"}, "regnet_x_800mf": {"type": "regnet", "model_variant": "x_800mf"}, "regnet_x_1_6gf": {"type": "regnet", "model_variant": "x_1_6gf"}, "regnet_x_3_2gf": {"type": "regnet", "model_variant": "x_3_2gf"}, "regnet_x_8gf": {"type": "regnet", "model_variant": "x_8gf"}, "regnet_x_16gf": {"type": "regnet", "model_variant": "x_16gf"}, "regnet_x_32gf": {"type": "regnet", "model_variant": "x_32gf"}, "vgg11": {"type": "vgg", "model_variant": 11}, "vgg11_bn": {"type": "vgg", "model_variant": "11_bn"}, "vgg13": {"type": "vgg", "model_variant": 13}, "vgg13_bn": {"type": "vgg", "model_variant": "13_bn"}, "vgg16": {"type": "vgg", "model_variant": 16}, "vgg16_bn": {"type": "vgg", "model_variant": "16_bn"}, "vgg19": {"type": "vgg", "model_variant": 19}, "vgg19_bn": {"type": "vgg", "model_variant": "19_bn"}, "shufflenet_v2_x0_5": {"type": "shufflenet_v2", "model_variant": "x0_5"}, "shufflenet_v2_x1_0": {"type": "shufflenet_v2", "model_variant": "x1_0"}, "shufflenet_v2_x1_5": {"type": "shufflenet_v2", "model_variant": "x1_5"}, "shufflenet_v2_x2_0": {"type": "shufflenet_v2", "model_variant": "x2_0"}, "squeezenet1_0": {"type": "squeezenet", "model_variant": "1_0"}, "squeezenet1_1": {"type": "squeezenet", "model_variant": "1_1"}, "swin_t": {"type": "swin_transformer", "model_variant": "t"}, "swin_s": {"type": "swin_transformer", "model_variant": "s"}, "swin_b": {"type": "swin_transformer", "model_variant": "b"}, "swin_v2_t": {"type": "swin_transformer", "model_variant": "v2_t"}, "swin_v2_s": {"type": "swin_transformer", "model_variant": "v2_s"}, "swin_v2_b": {"type": "swin_transformer", "model_variant": "v2_b"}, "vit_b_16": {"type": "vit", "model_variant": "b_16"}, "vit_b_32": {"type": "vit", "model_variant": "b_32"}, "vit_l_16": {"type": "vit", "model_variant": "l_16"}, "vit_l_32": {"type": "vit", "model_variant": "l_32"}, "vit_h_14": {"type": "vit", "model_variant": "h_14"}, "convnext_tiny": {"type": "convnext", "model_variant": "tiny"}, "convnext_small": {"type": "convnext", "model_variant": "small"}, "convnext_base": {"type": "convnext", "model_variant": "base"}, "convnext_large": {"type": "convnext", "model_variant": "large"}, "maxvit_t": {"type": "maxvit", "model_variant": "t"}, "alexnet": {"type": "alexnet"}, "googlenet": {"type": "googlenet"}, "inception_v3": {"type": "inceptionv3"}, "mobilenet_v2": {"type": "mobilenet_v2"}, "mobilenet_v3_large": {"type": "mobilenetv3", "model_variant": "large"}, "mobilenet_v3_small": {"type": "mobilenetv3", "model_variant": "small"}, } METRIC_DISPLAY_NAMES = { "accuracy": "Accuracy", "accuracy_micro": "Accuracy-Micro", "loss": "Loss", "roc_auc": "ROC-AUC", "roc_auc_macro": "ROC-AUC-Macro", "roc_auc_micro": "ROC-AUC-Micro", "hits_at_k": "Hits at K", "precision": "Precision", "recall": "Recall", "specificity": "Specificity", "kappa_score": "Cohen's Kappa", "token_accuracy": "Token Accuracy", "avg_precision_macro": "Precision-Macro", "avg_recall_macro": "Recall-Macro", "avg_f1_score_macro": "F1-score-Macro", "avg_precision_micro": "Precision-Micro", "avg_recall_micro": "Recall-Micro", "avg_f1_score_micro": "F1-score-Micro", "avg_precision_weighted": "Precision-Weighted", "avg_recall_weighted": "Recall-Weighted", "avg_f1_score_weighted": "F1-score-Weighted", "average_precision_macro": "Precision-Average-Macro", "average_precision_micro": "Precision-Average-Micro", "average_precision_samples": "Precision-Average-Samples", "mean_squared_error": "Mean Squared Error", "mean_absolute_error": "Mean Absolute Error", "r2": "R² Score", "root_mean_squared_error": "Root Mean Squared Error", "mean_absolute_percentage_error": "Mean Absolute % Error", "root_mean_squared_percentage_error": "Root Mean Squared % Error", }