Mercurial > repos > goeckslab > ludwig_predict
diff ludwig_predict.xml @ 0:0a7b83ddda17 draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Ludwig.git commit bdea9430787658783a51cc6c2ae951a01e455bb4
author | goeckslab |
---|---|
date | Tue, 07 Jan 2025 22:45:18 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ludwig_predict.xml Tue Jan 07 22:45:18 2025 +0000 @@ -0,0 +1,111 @@ +<tool id="ludwig_predict" name="Ludwig Predict" version="@VERSION@" profile="@PROFILE@"> + <description>loads a pretrained model to do prediction</description> + <macros> + <import>ludwig_macros.xml</import> + </macros> + <expand macro="python_requirements_gpu" /> + <expand macro="macro_stdio" /> + <version_command>echo "@VERSION@"</version_command> + <command> + <![CDATA[ + #import re + mkdir -p outputs && + #if $dataset + #set $sanitized_dataset = re.sub('[^\w\-_\.]', '_', $dataset.element_identifier.strip()) + ln -sf '$dataset' "./${sanitized_dataset}"; + #end if + + #if $raw_data + unzip -o -q '$raw_data' -d ./; + #end if + + python '$__tool_directory__/ludwig_predict.py' + #if $model_path + --model_path '$model_path.extra_files_path' + #end if + #if $dataset + --dataset "./${sanitized_dataset}" + #end if + #if $disable_parallel_threads + --disable_parallel_threads + #end if + --output_directory "./outputs" + --data_format '$data_format' + --split '$split' + --backend local + --skip_save_unprocessed_output && + echo "Prediction is done!" + + ]]> + </command> + <configfiles> + <inputs name="inputs" /> + </configfiles> + <inputs> + <param name="model_path" type="data" format="ludwig_model" label="Load the pretrained model" /> + <param name="dataset" type="data" format="tabular,csv,h5,json,txt" label="Input dataset" /> + <param name="data_format" type="select" label="Data format"> + <option value="auto" selected="true">auto</option> + <option value="tsv">tsv</option> + <option value="csv">csv</option> + <option value="h5">h5</option> + <option value="json">json</option> + </param> + <param name="split" type="select" label="Select the split portion to test the model on"> + <option value="training">training</option> + <option value="validation">validation</option> + <option value="test">test</option> + <option value="full" selected="true">full</option> + </param> + <param name="batch_size" type="integer" value="128" optional="true" label="Batch size" min="1" max="4096" /> + <param name="disable_parallel_threads" type="boolean" checked="false" label="Whether to disable parallel threads for reproducibility?" /> + <param name="raw_data" type="data" format="zip" optional="true" label="Raw data" help="Optional. Needed for images."/> + </inputs> + <outputs> + <collection type="list" name="output_csv" label="${tool.name} CSV on ${on_string}" > + <discover_datasets pattern="(?P<designation>predictions_parquet\.csv)" format="csv" directory="outputs" /> + <discover_datasets pattern="(?P<designation>.+)\.json" format="json" directory="outputs" /> + </collection> + <!-- <data format="html" name="output_report" from_work_dir="outputs/smart_report.html" label="${tool.name} report on ${on_string}" /> --> + <!-- <data format="csv" name="output_top_k" label="${tool.name} top K predictions on ${on_string}" /> --> + </outputs> + <tests> + <test> + <param name="model_path" value="" ftype="ludwig_model"> + <composite_data value="temp_model01/model_hyperparameters.json" /> + <composite_data value="temp_model01/model_weights" /> + <composite_data value="temp_model01/training_set_metadata.json" /> + <composite_data value="temp_model01/training_progress.json" /> + </param> + <param name="dataset" value="temperature_la.csv" ftype="csv" /> + <param name="split" value="test" /> + <output_collection name="output_csv"> + <element name="predictions_parquet.csv"> + <assert_contents> + <has_n_columns n="1" /> + </assert_contents> + </element> + </output_collection> + </test> + </tests> + <help> + <![CDATA[ +**What it does** +This tool conducts `ludwig predict`. + + +**Input** +- a trained ludwig model. +- dataset to be evaluate. + + +**Output** +- report in html. +- a collection of prediction results. + + + + ]]> + </help> + <expand macro="macro_citations" /> +</tool>