Mercurial > repos > goeckslab > ludwig_train
comparison ludwig_experiment.py @ 0:f0be10937f5c draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Ludwig.git commit bdea9430787658783a51cc6c2ae951a01e455bb4
author | goeckslab |
---|---|
date | Tue, 07 Jan 2025 22:44:09 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0be10937f5c |
---|---|
1 import json | |
2 import logging | |
3 import os | |
4 import pickle | |
5 import sys | |
6 | |
7 from jinja_report import generate_report | |
8 | |
9 from ludwig.experiment import cli | |
10 from ludwig.globals import ( | |
11 DESCRIPTION_FILE_NAME, | |
12 PREDICTIONS_PARQUET_FILE_NAME, | |
13 TEST_STATISTICS_FILE_NAME, | |
14 TRAIN_SET_METADATA_FILE_NAME | |
15 ) | |
16 from ludwig.utils.data_utils import get_split_path | |
17 from ludwig.visualize import get_visualizations_registry | |
18 | |
19 from model_unpickler import SafeUnpickler | |
20 | |
21 import pandas as pd | |
22 | |
23 from utils import ( | |
24 encode_image_to_base64, | |
25 get_html_closing, | |
26 get_html_template | |
27 ) | |
28 | |
29 import yaml | |
30 | |
31 | |
32 logging.basicConfig(level=logging.DEBUG) | |
33 | |
34 LOG = logging.getLogger(__name__) | |
35 | |
36 setattr(pickle, 'Unpickler', SafeUnpickler) | |
37 | |
38 # visualization | |
39 output_directory = None | |
40 for ix, arg in enumerate(sys.argv): | |
41 if arg == "--output_directory": | |
42 output_directory = sys.argv[ix+1] | |
43 break | |
44 | |
45 viz_output_directory = os.path.join(output_directory, "visualizations") | |
46 | |
47 | |
48 def get_output_feature_name(experiment_dir, output_feature=0): | |
49 """Helper function to extract specified output feature name. | |
50 | |
51 :param experiment_dir: Path to the experiment directory | |
52 :param output_feature: position of the output feature the description.json | |
53 :return output_feature_name: name of the first output feature name | |
54 from the experiment | |
55 """ | |
56 if os.path.exists(os.path.join(experiment_dir, DESCRIPTION_FILE_NAME)): | |
57 description_file = os.path.join(experiment_dir, DESCRIPTION_FILE_NAME) | |
58 with open(description_file, "rb") as f: | |
59 content = json.load(f) | |
60 output_feature_name = \ | |
61 content["config"]["output_features"][output_feature]["name"] | |
62 dataset_path = content["dataset"] | |
63 return output_feature_name, dataset_path | |
64 return None, None | |
65 | |
66 | |
67 def check_file(file_path): | |
68 """Check if the file exists; return None if it doesn't.""" | |
69 return file_path if os.path.exists(file_path) else None | |
70 | |
71 | |
72 def make_visualizations(ludwig_output_directory_name): | |
73 ludwig_output_directory = os.path.join( | |
74 output_directory, | |
75 ludwig_output_directory_name, | |
76 ) | |
77 visualizations = [ | |
78 "confidence_thresholding", | |
79 "confidence_thresholding_data_vs_acc", | |
80 "confidence_thresholding_data_vs_acc_subset", | |
81 "confidence_thresholding_data_vs_acc_subset_per_class", | |
82 "confidence_thresholding_2thresholds_2d", | |
83 "confidence_thresholding_2thresholds_3d", | |
84 "binary_threshold_vs_metric", | |
85 "roc_curves", | |
86 "roc_curves_from_test_statistics", | |
87 "calibration_1_vs_all", | |
88 "calibration_multiclass", | |
89 "confusion_matrix", | |
90 "frequency_vs_f1", | |
91 "learning_curves", | |
92 ] | |
93 | |
94 # Check existence of required files | |
95 training_statistics = check_file(os.path.join( | |
96 ludwig_output_directory, | |
97 "training_statistics.json", | |
98 )) | |
99 test_statistics = check_file(os.path.join( | |
100 ludwig_output_directory, | |
101 TEST_STATISTICS_FILE_NAME, | |
102 )) | |
103 ground_truth_metadata = check_file(os.path.join( | |
104 ludwig_output_directory, | |
105 "model", | |
106 TRAIN_SET_METADATA_FILE_NAME, | |
107 )) | |
108 probabilities = check_file(os.path.join( | |
109 ludwig_output_directory, | |
110 PREDICTIONS_PARQUET_FILE_NAME, | |
111 )) | |
112 | |
113 output_feature, dataset_path = get_output_feature_name( | |
114 ludwig_output_directory) | |
115 ground_truth = None | |
116 split_file = None | |
117 if dataset_path: | |
118 ground_truth = check_file(dataset_path) | |
119 split_file = check_file(get_split_path(dataset_path)) | |
120 | |
121 if (not output_feature) and (test_statistics): | |
122 test_stat = os.path.join(test_statistics) | |
123 with open(test_stat, "rb") as f: | |
124 content = json.load(f) | |
125 output_feature = next(iter(content.keys())) | |
126 | |
127 for viz in visualizations: | |
128 viz_func = get_visualizations_registry()[viz] | |
129 try: | |
130 viz_func( | |
131 training_statistics=[training_statistics] | |
132 if training_statistics else [], | |
133 test_statistics=[test_statistics] if test_statistics else [], | |
134 probabilities=[probabilities] if probabilities else [], | |
135 top_n_classes=[0], | |
136 output_feature_name=output_feature if output_feature else "", | |
137 ground_truth_split=2, | |
138 top_k=3, | |
139 ground_truth_metadata=ground_truth_metadata, | |
140 ground_truth=ground_truth, | |
141 split_file=split_file, | |
142 output_directory=viz_output_directory, | |
143 normalize=False, | |
144 file_format="png", | |
145 ) | |
146 except Exception as e: | |
147 LOG.info(f"Visualization: {viz}") | |
148 LOG.info(f"Error: {e}") | |
149 | |
150 | |
151 # report | |
152 def render_report( | |
153 title: str, | |
154 ludwig_output_directory_name: str, | |
155 show_visualization: bool = True | |
156 ): | |
157 ludwig_output_directory = os.path.join( | |
158 output_directory, | |
159 ludwig_output_directory_name, | |
160 ) | |
161 report_config = { | |
162 "title": title, | |
163 } | |
164 if show_visualization: | |
165 report_config["visualizations"] = [ | |
166 { | |
167 "src": f"visualizations/{fl}", | |
168 "type": "image" if fl[fl.rindex(".") + 1:] == "png" else | |
169 fl[fl.rindex(".") + 1:], | |
170 } for fl in sorted(os.listdir(viz_output_directory)) | |
171 ] | |
172 report_config["raw outputs"] = [ | |
173 { | |
174 "src": f"{fl}", | |
175 "type": "json" if fl.endswith(".json") else "unclassified", | |
176 } for fl in sorted(os.listdir(ludwig_output_directory)) | |
177 if fl.endswith((".json", ".parquet")) | |
178 ] | |
179 | |
180 with open(os.path.join(output_directory, "report_config.yml"), 'w') as fh: | |
181 yaml.safe_dump(report_config, fh) | |
182 | |
183 report_path = os.path.join(output_directory, "smart_report.html") | |
184 generate_report.main( | |
185 report_config, | |
186 schema={"html_height": 800}, | |
187 outfile=report_path, | |
188 ) | |
189 | |
190 | |
191 def convert_parquet_to_csv(ludwig_output_directory_name): | |
192 """Convert the predictions Parquet file to CSV.""" | |
193 ludwig_output_directory = os.path.join( | |
194 output_directory, ludwig_output_directory_name) | |
195 parquet_path = os.path.join( | |
196 ludwig_output_directory, "predictions.parquet") | |
197 csv_path = os.path.join( | |
198 ludwig_output_directory, "predictions_parquet.csv") | |
199 | |
200 try: | |
201 df = pd.read_parquet(parquet_path) | |
202 df.to_csv(csv_path, index=False) | |
203 LOG.info(f"Converted Parquet to CSV: {csv_path}") | |
204 except Exception as e: | |
205 LOG.error(f"Error converting Parquet to CSV: {e}") | |
206 | |
207 | |
208 def generate_html_report(title, ludwig_output_directory_name): | |
209 # ludwig_output_directory = os.path.join( | |
210 # output_directory, ludwig_output_directory_name) | |
211 | |
212 # test_statistics_html = "" | |
213 # # Read test statistics JSON and convert to HTML table | |
214 # try: | |
215 # test_statistics_path = os.path.join( | |
216 # ludwig_output_directory, TEST_STATISTICS_FILE_NAME) | |
217 # with open(test_statistics_path, "r") as f: | |
218 # test_statistics = json.load(f) | |
219 # test_statistics_html = "<h2>Test Statistics</h2>" | |
220 # test_statistics_html += json_to_html_table( | |
221 # test_statistics) | |
222 # except Exception as e: | |
223 # LOG.info(f"Error reading test statistics: {e}") | |
224 | |
225 # Convert visualizations to HTML | |
226 plots_html = "" | |
227 if len(os.listdir(viz_output_directory)) > 0: | |
228 plots_html = "<h2>Visualizations</h2>" | |
229 for plot_file in sorted(os.listdir(viz_output_directory)): | |
230 plot_path = os.path.join(viz_output_directory, plot_file) | |
231 if os.path.isfile(plot_path) and plot_file.endswith((".png", ".jpg")): | |
232 encoded_image = encode_image_to_base64(plot_path) | |
233 plots_html += ( | |
234 f'<div class="plot">' | |
235 f'<h3>{os.path.splitext(plot_file)[0]}</h3>' | |
236 '<img src="data:image/png;base64,' | |
237 f'{encoded_image}" alt="{plot_file}">' | |
238 f'</div>' | |
239 ) | |
240 | |
241 # Generate the full HTML content | |
242 html_content = f""" | |
243 {get_html_template()} | |
244 <h1>{title}</h1> | |
245 {plots_html} | |
246 {get_html_closing()} | |
247 """ | |
248 | |
249 # Save the HTML report | |
250 title: str | |
251 report_name = title.lower().replace(" ", "_") | |
252 report_path = os.path.join(output_directory, f"{report_name}_report.html") | |
253 with open(report_path, "w") as report_file: | |
254 report_file.write(html_content) | |
255 | |
256 LOG.info(f"HTML report generated at: {report_path}") | |
257 | |
258 | |
259 if __name__ == "__main__": | |
260 | |
261 cli(sys.argv[1:]) | |
262 | |
263 ludwig_output_directory_name = "experiment_run" | |
264 | |
265 make_visualizations(ludwig_output_directory_name) | |
266 # title = "Ludwig Experiment" | |
267 # render_report(title, ludwig_output_directory_name) | |
268 convert_parquet_to_csv(ludwig_output_directory_name) | |
269 generate_html_report("Ludwig Experiment", ludwig_output_directory_name) |