Mercurial > repos > goeckslab > pycaret_predict
comparison feature_importance.py @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1f20fe57fdee |
---|---|
1 import base64 | |
2 import logging | |
3 import os | |
4 | |
5 import matplotlib.pyplot as plt | |
6 | |
7 import pandas as pd | |
8 | |
9 from pycaret.classification import ClassificationExperiment | |
10 from pycaret.regression import RegressionExperiment | |
11 | |
12 logging.basicConfig(level=logging.DEBUG) | |
13 LOG = logging.getLogger(__name__) | |
14 | |
15 | |
16 class FeatureImportanceAnalyzer: | |
17 def __init__( | |
18 self, | |
19 task_type, | |
20 output_dir, | |
21 data_path=None, | |
22 data=None, | |
23 target_col=None): | |
24 | |
25 if data is not None: | |
26 self.data = data | |
27 LOG.info("Data loaded from memory") | |
28 else: | |
29 self.target_col = target_col | |
30 self.data = pd.read_csv(data_path, sep=None, engine='python') | |
31 self.data.columns = self.data.columns.str.replace('.', '_') | |
32 self.data = self.data.fillna(self.data.median(numeric_only=True)) | |
33 self.task_type = task_type | |
34 self.target = self.data.columns[int(target_col) - 1] | |
35 self.exp = ClassificationExperiment() \ | |
36 if task_type == 'classification' \ | |
37 else RegressionExperiment() | |
38 self.plots = {} | |
39 self.output_dir = output_dir | |
40 | |
41 def setup_pycaret(self): | |
42 LOG.info("Initializing PyCaret") | |
43 setup_params = { | |
44 'target': self.target, | |
45 'session_id': 123, | |
46 'html': True, | |
47 'log_experiment': False, | |
48 'system_log': False | |
49 } | |
50 LOG.info(self.task_type) | |
51 LOG.info(self.exp) | |
52 self.exp.setup(self.data, **setup_params) | |
53 | |
54 # def save_coefficients(self): | |
55 # model = self.exp.create_model('lr') | |
56 # coef_df = pd.DataFrame({ | |
57 # 'Feature': self.data.columns.drop(self.target), | |
58 # 'Coefficient': model.coef_[0] | |
59 # }) | |
60 # coef_html = coef_df.to_html(index=False) | |
61 # return coef_html | |
62 | |
63 def save_tree_importance(self): | |
64 model = self.exp.create_model('rf') | |
65 importances = model.feature_importances_ | |
66 processed_features = self.exp.get_config('X_transformed').columns | |
67 LOG.debug(f"Feature importances: {importances}") | |
68 LOG.debug(f"Features: {processed_features}") | |
69 feature_importances = pd.DataFrame({ | |
70 'Feature': processed_features, | |
71 'Importance': importances | |
72 }).sort_values(by='Importance', ascending=False) | |
73 plt.figure(figsize=(10, 6)) | |
74 plt.barh( | |
75 feature_importances['Feature'], | |
76 feature_importances['Importance']) | |
77 plt.xlabel('Importance') | |
78 plt.title('Feature Importance (Random Forest)') | |
79 plot_path = os.path.join( | |
80 self.output_dir, | |
81 'tree_importance.png') | |
82 plt.savefig(plot_path) | |
83 plt.close() | |
84 self.plots['tree_importance'] = plot_path | |
85 | |
86 def save_shap_values(self): | |
87 model = self.exp.create_model('lightgbm') | |
88 import shap | |
89 explainer = shap.Explainer(model) | |
90 shap_values = explainer.shap_values( | |
91 self.exp.get_config('X_transformed')) | |
92 shap.summary_plot(shap_values, | |
93 self.exp.get_config('X_transformed'), show=False) | |
94 plt.title('Shap (LightGBM)') | |
95 plot_path = os.path.join( | |
96 self.output_dir, 'shap_summary.png') | |
97 plt.savefig(plot_path) | |
98 plt.close() | |
99 self.plots['shap_summary'] = plot_path | |
100 | |
101 def generate_feature_importance(self): | |
102 # coef_html = self.save_coefficients() | |
103 self.save_tree_importance() | |
104 self.save_shap_values() | |
105 | |
106 def encode_image_to_base64(self, img_path): | |
107 with open(img_path, 'rb') as img_file: | |
108 return base64.b64encode(img_file.read()).decode('utf-8') | |
109 | |
110 def generate_html_report(self): | |
111 LOG.info("Generating HTML report") | |
112 | |
113 # Read and encode plot images | |
114 plots_html = "" | |
115 for plot_name, plot_path in self.plots.items(): | |
116 encoded_image = self.encode_image_to_base64(plot_path) | |
117 plots_html += f""" | |
118 <div class="plot" id="{plot_name}"> | |
119 <h2>{'Feature importance analysis from a' | |
120 'trained Random Forest' | |
121 if plot_name == 'tree_importance' | |
122 else 'SHAP Summary from a trained lightgbm'}</h2> | |
123 <h3>{'Use gini impurity for' | |
124 'calculating feature importance for classification' | |
125 'and Variance Reduction for regression' | |
126 if plot_name == 'tree_importance' | |
127 else ''}</h3> | |
128 <img src="data:image/png;base64, | |
129 {encoded_image}" alt="{plot_name}"> | |
130 </div> | |
131 """ | |
132 | |
133 # Generate HTML content with tabs | |
134 html_content = f""" | |
135 <h1>PyCaret Feature Importance Report</h1> | |
136 {plots_html} | |
137 """ | |
138 | |
139 return html_content | |
140 | |
141 def run(self): | |
142 LOG.info("Running feature importance analysis") | |
143 self.setup_pycaret() | |
144 self.generate_feature_importance() | |
145 html_content = self.generate_html_report() | |
146 LOG.info("Feature importance analysis completed") | |
147 return html_content | |
148 | |
149 | |
150 if __name__ == "__main__": | |
151 import argparse | |
152 parser = argparse.ArgumentParser(description="Feature Importance Analysis") | |
153 parser.add_argument( | |
154 "--data_path", type=str, help="Path to the dataset") | |
155 parser.add_argument( | |
156 "--target_col", type=int, | |
157 help="Index of the target column (1-based)") | |
158 parser.add_argument( | |
159 "--task_type", type=str, | |
160 choices=["classification", "regression"], | |
161 help="Task type: classification or regression") | |
162 parser.add_argument( | |
163 "--output_dir", | |
164 type=str, | |
165 help="Directory to save the outputs") | |
166 args = parser.parse_args() | |
167 | |
168 analyzer = FeatureImportanceAnalyzer( | |
169 args.data_path, args.target_col, | |
170 args.task_type, args.output_dir) | |
171 analyzer.run() |