Mercurial > repos > goeckslab > pycaret_predict
comparison pycaret_predict.xml @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children | 4a7df9abe4c4 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1f20fe57fdee |
---|---|
1 <tool id="pycaret_predict" name="PyCaret Predictor/Evaluator" version="@VERSION@" profile="@PROFILE@"> | |
2 <description>predicts/evaluates your pycaret ML model on a dataset. </description> | |
3 <macros> | |
4 <import>pycaret_macros.xml</import> | |
5 </macros> | |
6 <expand macro="python_requirements" /> | |
7 <command> | |
8 <![CDATA[ | |
9 echo $target_feature && | |
10 python $__tool_directory__/pycaret_predict.py --model_path $input_model --data_path $input_dataset --task $model_type | |
11 #if $target_feature | |
12 --target $target_feature | |
13 #end if | |
14 ]]> | |
15 </command> | |
16 <inputs> | |
17 <param name="input_model" type="data" format="h5" label="Model you want to use to predict/evaluate:" /> | |
18 <param name="input_dataset" type="data" format="csv,tabular" label="Dataset you use to predict/evaluate" /> | |
19 <param name="model_type" type="select" label="Task"> | |
20 <option value="classification">classification</option> | |
21 <option value="regression">regression</option> | |
22 </param> | |
23 <param name="target_feature" multiple="false" type="data_column" use_header_names="true" data_ref="input_dataset" optional="true" label="Does your uploaded data include a target column? If so, please select the target column:" /> | |
24 </inputs> | |
25 <outputs> | |
26 <data name="prediction" format="csv" from_work_dir="predictions.csv" label="${tool.name} prediction results on ${on_string}" /> | |
27 <data name="report" format="html" from_work_dir="evaluation_report.html" label="${tool.name} evaluation report on ${on_string}"> | |
28 <filter>target_feature</filter> | |
29 </data> | |
30 </outputs> | |
31 <tests> | |
32 <test expect_num_outputs="2"> | |
33 <param name="input_model" value="expected_model_classification.h5" /> | |
34 <param name="input_dataset" value="pcr.tsv" /> | |
35 <param name="model_type" value="classification" /> | |
36 <param name="target_feature" value="11" /> | |
37 <output name="prediction" file="predictions_classification.csv" /> | |
38 <output name="report" file="evaluation_report_classification.html" compare="sim_size" /> | |
39 </test> | |
40 <test expect_num_outputs="2"> | |
41 <param name="input_model" value="expected_model_regression.h5" /> | |
42 <param name="input_dataset" value="auto-mpg.tsv" /> | |
43 <param name="model_type" value="regression" /> | |
44 <param name="target_feature" value="1" /> | |
45 <output name="prediction" file="predictions_regression.csv" /> | |
46 <output name="report" file="evaluation_report_regression.html" compare="sim_size" /> | |
47 </test> | |
48 </tests> | |
49 <help> | |
50 This tool uses PyCaret to evaluate a machine learning model or do prediction. | |
51 | |
52 **Outputs**: | |
53 | |
54 - **prediction**: The prediction results on the dataset in a csv format. | |
55 | |
56 - **report**: The evaluation report is generated in HTML format. | |
57 if you upload a dataset with a target column and select the target column in the target_feature input field. | |
58 | |
59 </help> | |
60 <expand macro="macro_citations" /> | |
61 </tool> |