Mercurial > repos > goeckslab > pycaret_predict
comparison pycaret_train.py @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1f20fe57fdee |
---|---|
1 import argparse | |
2 import logging | |
3 | |
4 from pycaret_classification import ClassificationModelTrainer | |
5 | |
6 from pycaret_regression import RegressionModelTrainer | |
7 | |
8 logging.basicConfig(level=logging.DEBUG) | |
9 LOG = logging.getLogger(__name__) | |
10 | |
11 | |
12 def main(): | |
13 parser = argparse.ArgumentParser() | |
14 parser.add_argument("--input_file", help="Path to the input file") | |
15 parser.add_argument("--target_col", help="Column number of the target") | |
16 parser.add_argument("--output_dir", | |
17 help="Path to the output directory") | |
18 parser.add_argument("--model_type", | |
19 choices=["classification", "regression"], | |
20 help="Type of the model") | |
21 parser.add_argument("--train_size", type=float, | |
22 default=None, | |
23 help="Train size for PyCaret setup") | |
24 parser.add_argument("--normalize", action="store_true", | |
25 default=None, | |
26 help="Normalize data for PyCaret setup") | |
27 parser.add_argument("--feature_selection", action="store_true", | |
28 default=None, | |
29 help="Perform feature selection for PyCaret setup") | |
30 parser.add_argument("--cross_validation", action="store_true", | |
31 default=None, | |
32 help="Perform cross-validation for PyCaret setup") | |
33 parser.add_argument("--cross_validation_folds", type=int, | |
34 default=None, | |
35 help="Number of cross-validation folds \ | |
36 for PyCaret setup") | |
37 parser.add_argument("--remove_outliers", action="store_true", | |
38 default=None, | |
39 help="Remove outliers for PyCaret setup") | |
40 parser.add_argument("--remove_multicollinearity", action="store_true", | |
41 default=None, | |
42 help="Remove multicollinearity for PyCaret setup") | |
43 parser.add_argument("--polynomial_features", action="store_true", | |
44 default=None, | |
45 help="Generate polynomial features for PyCaret setup") | |
46 parser.add_argument("--feature_interaction", action="store_true", | |
47 default=None, | |
48 help="Generate feature interactions for PyCaret setup") | |
49 parser.add_argument("--feature_ratio", action="store_true", | |
50 default=None, | |
51 help="Generate feature ratios for PyCaret setup") | |
52 parser.add_argument("--fix_imbalance", action="store_true", | |
53 default=None, | |
54 help="Fix class imbalance for PyCaret setup") | |
55 parser.add_argument("--models", nargs='+', | |
56 default=None, | |
57 help="Selected models for training") | |
58 parser.add_argument("--random_seed", type=int, | |
59 default=42, | |
60 help="Random seed for PyCaret setup") | |
61 parser.add_argument("--test_file", type=str, default=None, | |
62 help="Path to the test data file") | |
63 | |
64 args = parser.parse_args() | |
65 | |
66 model_kwargs = { | |
67 "train_size": args.train_size, | |
68 "normalize": args.normalize, | |
69 "feature_selection": args.feature_selection, | |
70 "cross_validation": args.cross_validation, | |
71 "cross_validation_folds": args.cross_validation_folds, | |
72 "remove_outliers": args.remove_outliers, | |
73 "remove_multicollinearity": args.remove_multicollinearity, | |
74 "polynomial_features": args.polynomial_features, | |
75 "feature_interaction": args.feature_interaction, | |
76 "feature_ratio": args.feature_ratio, | |
77 "fix_imbalance": args.fix_imbalance, | |
78 } | |
79 LOG.info(f"Model kwargs: {model_kwargs}") | |
80 | |
81 # Remove None values from model_kwargs | |
82 | |
83 LOG.info(f"Model kwargs 2: {model_kwargs}") | |
84 if args.models: | |
85 model_kwargs["models"] = args.models[0].split(",") | |
86 | |
87 model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} | |
88 | |
89 if args.model_type == "classification": | |
90 trainer = ClassificationModelTrainer( | |
91 args.input_file, | |
92 args.target_col, | |
93 args.output_dir, | |
94 args.model_type, | |
95 args.random_seed, | |
96 args.test_file, | |
97 **model_kwargs) | |
98 elif args.model_type == "regression": | |
99 if "fix_imbalance" in model_kwargs: | |
100 del model_kwargs["fix_imbalance"] | |
101 trainer = RegressionModelTrainer( | |
102 args.input_file, | |
103 args.target_col, | |
104 args.output_dir, | |
105 args.model_type, | |
106 args.random_seed, | |
107 args.test_file, | |
108 **model_kwargs) | |
109 else: | |
110 LOG.error("Invalid model type. Please choose \ | |
111 'classification' or 'regression'.") | |
112 return | |
113 trainer.run() | |
114 | |
115 | |
116 if __name__ == "__main__": | |
117 main() |