Mercurial > repos > goeckslab > pycaret_predict
view dashboard.py @ 2:0314dad38aaa draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit ff6d674ecc83db933153b797ef4dbde17f07b10e
author | goeckslab |
---|---|
date | Wed, 01 Jan 2025 03:19:27 +0000 |
parents | 1f20fe57fdee |
children |
line wrap: on
line source
import logging from typing import Any, Dict, Optional from pycaret.utils.generic import get_label_encoder logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) def generate_classifier_explainer_dashboard( exp, estimator, display_format: str = "dash", dashboard_kwargs: Optional[Dict[str, Any]] = None, run_kwargs: Optional[Dict[str, Any]] = None, **kwargs,): """ This function is changed from pycaret.classification.oop.dashboard() This function generates the interactive dashboard for a trained model. The dashboard is implemented using ExplainerDashboard (explainerdashboard.readthedocs.io) estimator: scikit-learn compatible object Trained model object display_format: str, default = 'dash' Render mode for the dashboard. The default is set to ``dash`` which will render a dashboard in browser. There are four possible options: - 'dash' - displays the dashboard in browser - 'inline' - displays the dashboard in the jupyter notebook cell. - 'jupyterlab' - displays the dashboard in jupyterlab pane. - 'external' - displays the dashboard in a separate tab. (use in Colab) dashboard_kwargs: dict, default = {} (empty dict) Dictionary of arguments passed to the ``ExplainerDashboard`` class. run_kwargs: dict, default = {} (empty dict) Dictionary of arguments passed to the ``run`` method of ``ExplainerDashboard``. **kwargs: Additional keyword arguments to pass to the ``ClassifierExplainer`` or ``RegressionExplainer`` class. Returns: ExplainerDashboard """ dashboard_kwargs = dashboard_kwargs or {} run_kwargs = run_kwargs or {} from explainerdashboard import ClassifierExplainer, ExplainerDashboard le = get_label_encoder(exp.pipeline) if le: labels_ = list(le.classes_) else: labels_ = None # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` X_test_df = exp.X_test_transformed.copy() LOG.info(X_test_df) X_test_df.columns = [ col.replace(".", "__").replace("{", "__").replace("}", "__") for col in X_test_df.columns ] explainer = ClassifierExplainer( estimator, X_test_df, exp.y_test_transformed, labels=labels_, **kwargs ) return ExplainerDashboard( explainer, mode=display_format, contributions=False, whatif=False, **dashboard_kwargs ) def generate_regression_explainer_dashboard( exp, estimator, display_format: str = "dash", dashboard_kwargs: Optional[Dict[str, Any]] = None, run_kwargs: Optional[Dict[str, Any]] = None, **kwargs,): """ This function is changed from pycaret.regression.oop.dashboard() This function generates the interactive dashboard for a trained model. The dashboard is implemented using ExplainerDashboard (explainerdashboard.readthedocs.io) estimator: scikit-learn compatible object Trained model object display_format: str, default = 'dash' Render mode for the dashboard. The default is set to ``dash`` which will render a dashboard in browser. There are four possible options: - 'dash' - displays the dashboard in browser - 'inline' - displays the dashboard in the jupyter notebook cell. - 'jupyterlab' - displays the dashboard in jupyterlab pane. - 'external' - displays the dashboard in a separate tab. (use in Colab) dashboard_kwargs: dict, default = {} (empty dict) Dictionary of arguments passed to the ``ExplainerDashboard`` class. run_kwargs: dict, default = {} (empty dict) Dictionary of arguments passed to the ``run`` method of ``ExplainerDashboard``. **kwargs: Additional keyword arguments to pass to the ``ClassifierExplainer`` or ``RegressionExplainer`` class. Returns: ExplainerDashboard """ dashboard_kwargs = dashboard_kwargs or {} run_kwargs = run_kwargs or {} from explainerdashboard import ExplainerDashboard, RegressionExplainer # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` X_test_df = exp.X_test_transformed.copy() X_test_df.columns = [ col.replace(".", "__").replace("{", "__").replace("}", "__") for col in X_test_df.columns ] explainer = RegressionExplainer( estimator, X_test_df, exp.y_test_transformed, **kwargs ) return ExplainerDashboard( explainer, mode=display_format, contributions=False, whatif=False, shap_interaction=False, decision_trees=False, **dashboard_kwargs )