Mercurial > repos > goeckslab > pycaret_predict
view pycaret_train.py @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children |
line wrap: on
line source
import argparse import logging from pycaret_classification import ClassificationModelTrainer from pycaret_regression import RegressionModelTrainer logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("--input_file", help="Path to the input file") parser.add_argument("--target_col", help="Column number of the target") parser.add_argument("--output_dir", help="Path to the output directory") parser.add_argument("--model_type", choices=["classification", "regression"], help="Type of the model") parser.add_argument("--train_size", type=float, default=None, help="Train size for PyCaret setup") parser.add_argument("--normalize", action="store_true", default=None, help="Normalize data for PyCaret setup") parser.add_argument("--feature_selection", action="store_true", default=None, help="Perform feature selection for PyCaret setup") parser.add_argument("--cross_validation", action="store_true", default=None, help="Perform cross-validation for PyCaret setup") parser.add_argument("--cross_validation_folds", type=int, default=None, help="Number of cross-validation folds \ for PyCaret setup") parser.add_argument("--remove_outliers", action="store_true", default=None, help="Remove outliers for PyCaret setup") parser.add_argument("--remove_multicollinearity", action="store_true", default=None, help="Remove multicollinearity for PyCaret setup") parser.add_argument("--polynomial_features", action="store_true", default=None, help="Generate polynomial features for PyCaret setup") parser.add_argument("--feature_interaction", action="store_true", default=None, help="Generate feature interactions for PyCaret setup") parser.add_argument("--feature_ratio", action="store_true", default=None, help="Generate feature ratios for PyCaret setup") parser.add_argument("--fix_imbalance", action="store_true", default=None, help="Fix class imbalance for PyCaret setup") parser.add_argument("--models", nargs='+', default=None, help="Selected models for training") parser.add_argument("--random_seed", type=int, default=42, help="Random seed for PyCaret setup") parser.add_argument("--test_file", type=str, default=None, help="Path to the test data file") args = parser.parse_args() model_kwargs = { "train_size": args.train_size, "normalize": args.normalize, "feature_selection": args.feature_selection, "cross_validation": args.cross_validation, "cross_validation_folds": args.cross_validation_folds, "remove_outliers": args.remove_outliers, "remove_multicollinearity": args.remove_multicollinearity, "polynomial_features": args.polynomial_features, "feature_interaction": args.feature_interaction, "feature_ratio": args.feature_ratio, "fix_imbalance": args.fix_imbalance, } LOG.info(f"Model kwargs: {model_kwargs}") # Remove None values from model_kwargs LOG.info(f"Model kwargs 2: {model_kwargs}") if args.models: model_kwargs["models"] = args.models[0].split(",") model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None} if args.model_type == "classification": trainer = ClassificationModelTrainer( args.input_file, args.target_col, args.output_dir, args.model_type, args.random_seed, args.test_file, **model_kwargs) elif args.model_type == "regression": if "fix_imbalance" in model_kwargs: del model_kwargs["fix_imbalance"] trainer = RegressionModelTrainer( args.input_file, args.target_col, args.output_dir, args.model_type, args.random_seed, args.test_file, **model_kwargs) else: LOG.error("Invalid model type. Please choose \ 'classification' or 'regression'.") return trainer.run() if __name__ == "__main__": main()