Mercurial > repos > goeckslab > scimap_phenotyping
comparison scimap_plotting.py @ 2:ce22e846c5e4 draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/scimap commit 9fb5578191db8a559191e45156cfb95350f01aea
author | goeckslab |
---|---|
date | Mon, 10 Jun 2024 18:44:25 +0000 |
parents | |
children | 88fca6e905be |
comparison
equal
deleted
inserted
replaced
1:dcfcad35e847 | 2:ce22e846c5e4 |
---|---|
1 import argparse | |
2 import json | |
3 import os | |
4 import warnings | |
5 | |
6 import matplotlib.pylab as plt | |
7 import numpy as np | |
8 import scimap as sm | |
9 import seaborn as sns | |
10 from anndata import read_h5ad | |
11 | |
12 sns.set(color_codes=True) | |
13 | |
14 | |
15 def main(inputs, anndata, output): | |
16 """ | |
17 Parameter | |
18 --------- | |
19 inputs : str | |
20 File path to galaxy tool parameter. | |
21 anndata : str | |
22 File path to anndata containing phenotyping info. | |
23 output : str | |
24 File path to output. | |
25 """ | |
26 warnings.simplefilter('ignore') | |
27 | |
28 with open(inputs, 'r') as param_handler: | |
29 params = json.load(param_handler) | |
30 | |
31 adata = read_h5ad(anndata) | |
32 | |
33 tool = params['analyses']['selected_tool'] | |
34 options = params['analyses']['options'] | |
35 | |
36 if tool == 'stacked_barplot': | |
37 | |
38 # parse list text arguments | |
39 for o in options.copy(): | |
40 opt_list = options.pop(o) | |
41 if opt_list: | |
42 options[o] = [x.strip() for x in opt_list.split(',')] | |
43 | |
44 # add base args into options dict to pass to tool | |
45 options['x_axis'] = params['analyses']['x_axis'] | |
46 options['y_axis'] = params['analyses']['y_axis'] | |
47 options['method'] = params['analyses']['method'] | |
48 | |
49 options['return_data'] = True | |
50 | |
51 df = sm.pl.stacked_barplot(adata, **options) | |
52 | |
53 # Pick cmap to use | |
54 num_phenotypes = len(df.columns) - 1 | |
55 if num_phenotypes <= 9: | |
56 matplotlib_cmap = "Set1" | |
57 elif num_phenotypes > 9 and num_phenotypes <= 20: | |
58 matplotlib_cmap = plt.cm.tab20 | |
59 else: | |
60 matplotlib_cmap = plt.cm.gist_ncar | |
61 | |
62 # Plotting | |
63 sns.set_theme(style="white") | |
64 ax = df.plot.bar(stacked=True, cmap=matplotlib_cmap) | |
65 fig = ax.get_figure() | |
66 handles, labels = ax.get_legend_handles_labels() | |
67 ax.legend( | |
68 reversed(handles), | |
69 reversed(labels), | |
70 bbox_to_anchor=(1, 1), | |
71 loc='upper left' | |
72 ) | |
73 plt.tight_layout() | |
74 | |
75 # # save and close | |
76 fig.savefig('out.png', dpi=300) | |
77 plt.close(fig) | |
78 | |
79 if tool == 'voronoi': | |
80 | |
81 plt.style.use('fast') | |
82 | |
83 tool_func = getattr(sm.pl, tool) | |
84 | |
85 # x_lim/y_lim need to be parsed from comma-sep str to integer tuples | |
86 for lim in ['x_lim', 'y_lim']: | |
87 opt_list = options.pop(lim) | |
88 if opt_list: | |
89 options[lim] = [int(x.strip()) for x in opt_list.split(',')] | |
90 | |
91 # parse list text arguments | |
92 for cat in ['overlay_points_categories', 'overlay_drop_categories']: | |
93 opt_list = options.pop(cat) | |
94 if opt_list: | |
95 options[cat] = [x.strip() for x in opt_list.split(',')] | |
96 | |
97 # add base args into options dict to pass to tool | |
98 options['color_by'] = params['analyses']['color_by'] | |
99 options['x_coordinate'] = params['analyses']['x_coordinate'] | |
100 options['y_coordinate'] = params['analyses']['y_coordinate'] | |
101 | |
102 # fill any missing params with None as tool expects | |
103 for k, v in options.items(): | |
104 if v == '': | |
105 options[k] = None | |
106 | |
107 options['saveDir'] = os.getcwd() | |
108 options['fileName'] = 'out.png' | |
109 | |
110 if options['size_max'] is None: | |
111 options['size_max'] = np.inf | |
112 | |
113 # call the tool and unpack all options | |
114 tool_func(adata, **options) | |
115 | |
116 | |
117 if __name__ == '__main__': | |
118 aparser = argparse.ArgumentParser() | |
119 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
120 aparser.add_argument("-a", "--anndata", dest="anndata", required=True) | |
121 aparser.add_argument("-e", "--output", dest="output", required=True) | |
122 | |
123 args = aparser.parse_args() | |
124 | |
125 main(args.inputs, args.anndata, args.output) |