Mercurial > repos > goeckslab > scimap_plotting
view scimap_phenotyping.py @ 0:834ee9481948 draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/scimap commit 9fb5578191db8a559191e45156cfb95350f01aea
author | goeckslab |
---|---|
date | Mon, 10 Jun 2024 18:45:07 +0000 |
parents | |
children |
line wrap: on
line source
import argparse import warnings import pandas as pd import scimap as sm from anndata import read_h5ad def main( adata, output, log, gating_workflow, gating_workflow_ext, manual_gates=None, manual_gates_ext=None, random_state=0 ): """ Parameter --------- adata : str File path to the input AnnData. output : str File path to the output AnnData. log: bool Boolean whether to log the input data prior to rescaling gating_workflow : str File path to the gating workflow. gating_workflow_ext : str Datatype for gating workflow, either 'csv' or 'tabular'. manual_gates : str File path to the munual gating. manual_gates_ext : str Datatype for munual gate, either 'csv' or 'tabular'. random_state: int The seed used by the random number generator for GMM in sm.pp.rescale """ warnings.simplefilter('ignore') adata = read_h5ad(adata) # Rescale data if manual_gates: sep = ',' if manual_gates_ext == 'csv' else '\t' manual_gates = pd.read_csv(manual_gates, sep=sep) adata = sm.pp.rescale( adata, gate=manual_gates, log=log, random_state=random_state ) # Phenotype cells # Load the gating workflow sep = ',' if gating_workflow_ext == 'csv' else '\t' phenotype = pd.read_csv(gating_workflow, sep=sep) adata = sm.tl.phenotype_cells( adata, phenotype=phenotype, label="phenotype" ) # Summary of the phenotyping print(adata.obs['phenotype'].value_counts()) adata.write(output) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-a", "--adata", dest="adata", required=True) aparser.add_argument("-o", "--output", dest="output", required=True) aparser.add_argument("-l", "--log", dest="log", action="store_true") aparser.add_argument( "-g", "--gating_workflow", dest="gating_workflow", required=True ) aparser.add_argument( "-s", "--gating_workflow_ext", dest="gating_workflow_ext", required=True ) aparser.add_argument( "-m", "--manual_gates", dest="manual_gates", required=False ) aparser.add_argument( "-S", "--manual_gates_ext", dest="manual_gates_ext", required=False ) aparser.add_argument( "--random_state", dest="random_state", type=int, required=False ) args = aparser.parse_args() if args.log: print("\n adata.raw.X will be log1p transformed \n") main( adata=args.adata, output=args.output, log=args.log, gating_workflow=args.gating_workflow, gating_workflow_ext=args.gating_workflow_ext, manual_gates=args.manual_gates, manual_gates_ext=args.manual_gates_ext, random_state=args.random_state )