Mercurial > repos > goeckslab > scimap_plotting
view scimap_plotting.xml @ 2:ef73596d678a draft default tip
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/scimap commit c39cea5ae2ebf61b3d51d687fd9d2930c907b72d
author | goeckslab |
---|---|
date | Tue, 30 Jul 2024 18:20:43 +0000 |
parents | 834ee9481948 |
children |
line wrap: on
line source
<tool id="scimap_plotting" name="Spatial plotting functions" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description>from Scimap</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="scimap_requirements"/> <expand macro="macro_stdio" /> <version_command>echo "@VERSION@"</version_command> <command detect_errors="aggressive"> <![CDATA[ python '$__tool_directory__/scimap_plotting.py' --inputs '$inputs' --anndata '$anndata' --output '$output' ]]> </command> <configfiles> <inputs name="inputs" /> </configfiles> <inputs> <param name="anndata" type="data" format="h5ad" label="Select the input anndata" /> <conditional name="analyses"> <param name="selected_tool" type="select" label="Select a plotting function to run"> <option value="stacked_barplot">Stacked barplot</option> <option value="voronoi">Voronoi</option> </param> <when value="stacked_barplot"> <param argument="x_axis" type="text" value="imageid" label="Categorical column in adata.obs to be plotted on the x axis" /> <param argument="y_axis" type="text" value="phenotype" label="Categorical column in adata.obs to be plotted on the y axis" /> <param name="method" type="select" label="Select the metric for plotting"> <option value="percent" selected="true">Percent abundance</option> <option value="absolute">Absolute abundance</option> </param> <section name="options" title="Advanced Options" expanded="false"> <param argument="subset_xaxis" type="text" value="" optional="true" label="Subset x-axis prior to plotting. Type in a list of categories to include on x-axis" help="Optional. Comma delimited. Default is all categories in x-axis variable" /> <param argument="subset_yaxis" type="text" value="" optional="true" label="Subset y-axis prior to plotting. Type in a list of categories to include on y-axis" help="Optional. Comma delimited. Default is all categories in y-axis variable" /> <param argument="order_xaxis" type="text" value="" optional="true" label="Type in a list of categories to order to x-axis" help="Optional. Comma delimited. Default ordering is alphabetical" /> <param argument="order_yaxis" type="text" value="" optional="true" label="Type in a list of categories to order to y-axis" help="Optional. Comma delimited. Default ordering is alphabetical" /> <param argument="matplotlib_cmap" type="select" label="Matplotlib colormap to use for y-axis categories" help="See link below for colormaps explanation"> <option value="Pastel1">Pastel1</option> <option value="Pastel2">Pastel2</option> <option value="Paired">Paired</option> <option value="Accent">Accent</option> <option value="Dark2">Dark2</option> <option selected="true" value="Set1">Set1</option> <option value="Set2">Set2</option> <option value="Set3">Set3</option> <option value="tab10">tab10</option> <option value="tab20">tab20</option> <option value="tab20b">tab20b</option> <option value="tab20c">tab20c</option> </param> </section> </when> <when value="voronoi"> <param argument="color_by" type="text" value="phenotype" optional="false" label="Pass the name of the categorical variable by which to color the voronoi diagram" /> <param argument="x_coordinate" type="text" value="X_centroid" optional="false" label="Pass the name of the column containing cell X coordinates" /> <param argument="y_coordinate" type="text" value="Y_centroid" optional="false" label="Pass the name of the column containing cell Y coordinates" /> <section name="options" title="Advanced Options" expanded="false"> <param argument="imageid" type="text" value="imageid" optional="true" label="Pass the name of the column containing image IDs" help="Only necessary if subsetting one image out of a multi-image file" /> <param argument="subset" type="text" value="" optional="true" label="Image ID of a single image to be subsetted for plotting" /> <param argument="x_lim" type="text" value="" optional="true" label="Type in a list of limits for the x-axis" help="Optional. Comma delimited: xmin,xmax" /> <param argument="y_lim" type="text" value="" optional="true" label="Type in a list of limits for the y-axis" help="Optional. Comma delimited: ymin,ymax" /> <param argument="flip_y" type="boolean" truevalue="True" falsevalue="False" label="Flip Y-axis" /> <param argument="voronoi_edge_color" type="text" value="black" optional="true" label="Specify a Matplotlib color for marking the edges of the voronoi cells" /> <param argument="voronoi_line_width" type="float" value="0.1" optional="true" label="The linewidth of the marker edges" /> <param argument="voronoi_alpha" type="float" value="0.5" optional="true" label="The alpha blending value for voronoi cells" help="between 0 (transparent) and 1 (opaque)" /> <param argument="size_max" type="float" value="" optional="true" label="The maximum size for the Voronoi cells" help="Default is Inf" /> <param argument="overlay_points" type="text" value="" optional="true" label="Pass the name of the column which contains categorical variable to be overlayed" help="overlays a scatter plot on top of the voronoi diagram" /> <param argument="overlay_points_categories" type="text" value="" optional="true" label="Subset overlay categories to plotting. Type in a list of categories to include" help="Optional. Comma delimited. Default is all categories" /> <param argument="overlay_drop_categories" type="text" value="" optional="true" label="Specify a list of categories to exclude from overlay plotting." help="Convenience alternative to specifying categories to keep" /> <param argument="overlay_point_size" type="integer" value="5" optional="true" label="Overlay point size" /> <param argument="overlay_point_alpha" type="float" value="1" optional="true" label="The alpha blending value for overlay points" help="between 0 (transparent) and 1 (opaque)" /> <param argument="plot_legend" type="boolean" checked="true" truevalue="True" falsevalue="False" label="Whether to include a legend" /> <param argument="legend_size" type="integer" value="6" label="Point size of legend text" /> </section> </when> </conditional> </inputs> <outputs> <data from_work_dir="out.png" format="png" name="output" label="Scimap.pl.${analyses.selected_tool} on ${on_string}" /> </outputs> <tests> <test> <param name="anndata" value="tutorial_data_pheno.h5ad" /> <conditional name="analyses"> <param name="selected_tool" value="stacked_barplot" /> <param name="method" value="percent" /> </conditional> <output name="output"> <assert_contents> <has_size value="147000" delta="10000" /> </assert_contents> </output> </test> <test> <param name="anndata" value="tutorial_data_pheno.h5ad" /> <conditional name="analyses"> <param name="selected_tool" value="voronoi" /> </conditional> <output name="output"> <assert_contents> <has_size value="510000" delta="10000" /> </assert_contents> </output> </test> </tests> <help> <![CDATA[ **What it does** This tool creates stacked barplots or Voronoi plots from single-cell spatial data using Scimap For the stacked barplot tool, find colormap descriptions here: https://matplotlib.org/stable/users/explain/colors/colormaps.html ]]> </help> <expand macro="citations" /> </tool>