Mercurial > repos > goeckslab > squidpy
diff squidpy_spatial.py @ 0:be0e7952e229 draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/squidpy commit ee16860018eba110ff845d62b18396db22abd91e
author | goeckslab |
---|---|
date | Mon, 29 Aug 2022 23:20:54 +0000 |
parents | |
children | d30ef0613122 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/squidpy_spatial.py Mon Aug 29 23:20:54 2022 +0000 @@ -0,0 +1,110 @@ +import argparse +import ast +import json +import warnings + +import pandas as pd +import squidpy as sq +from anndata import read_h5ad + + +def main(inputs, anndata, output, output_plot): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter. + anndata : str + File path to anndata containing phenotyping info. + output : str + File path to output. + output_plot: str or None + File path to save the plotting image. + """ + warnings.simplefilter('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + adata = read_h5ad(anndata) + + if 'spatial' not in adata.obsm: + try: + adata.obsm['spatial'] = adata.obs[['X_centroid', 'Y_centroid']].values + except Exception as e: + print(e) + + tool = params['analyses']['selected_tool'] + tool_func = getattr(sq.gr, tool) + + options = params['analyses']['options'] + + for k, v in options.items(): + if not isinstance(v, str): + continue + + if v in ('', 'none'): + options[k] = None + continue + + if k == 'genes': # for spatial_autocorr and sepal + options[k] = [e.strip() for e in v.split(',')] + elif k == 'radius': # for spatial_neighbors + options[k] = ast.literal_eval(v) + elif k == 'numba_parallel': # for nhood_enrichment and ligrec + if v == 'false': + options[k] = False + elif v == 'true': + options[k] = True + elif k == 'interactions': # for ligrec + options[k] = pd.read_csv(v, sep="\t") + elif k == 'max_neighs': + options[k] = int(v) # for sepal + + cluster_key = params['analyses'].get('cluster_key') + if cluster_key: + tool_func(adata, cluster_key, **options) + else: + tool_func(adata, **options) + + if output_plot: + plotting_options = params['analyses']['plotting_options'] + for k, v in plotting_options.items(): + if not isinstance(v, str): + continue + + if v in ('', 'none'): + plotting_options[k] = None + continue + + if k == 'figsize': + options[k] = ast.literal_eval(v) + elif k in ('palette', 'score', 'source_groups', 'target_groups'): + options[k] = [e.strip() for e in v.split(',')] + elif k == 'means_range': # ligrec + v = v.strip() + if v[0] == '(': + v = v[1:] + if v[-1] == ')': + v = v[:-1] + options[k] = tuple([float(e.strip()) for e in v.split(',', 1)]) + + plotting_func = getattr(sq.pl, tool) + if cluster_key: + plotting_func(adata, cluster_key, save=output_plot, **plotting_options) + else: # TODO Remove this, since all plottings need cluster key + plotting_func(adata, save=output_plot, **plotting_options) + + adata.write(output) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--output", dest="output", required=True) + aparser.add_argument("-a", "--anndata", dest="anndata", required=True) + aparser.add_argument("-p", "--output_plot", dest="output_plot", required=False) + + args = aparser.parse_args() + + main(args.inputs, args.anndata, args.output, args.output_plot)