comparison insect_phenology_model.R @ 49:1b6864c5b50a draft

Uploaded
author greg
date Tue, 05 Jun 2018 07:52:59 -0400
parents 58a823b1d940
children 927321ed0322
comparison
equal deleted inserted replaced
48:99e1c1300fcd 49:1b6864c5b50a
4 4
5 option_list <- list( 5 option_list <- list(
6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), 6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"),
7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), 7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"),
8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), 8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"),
9 make_option(c("--end_date"), action="store", dest="end_date", default=NULL, help="End date for custom date interval"),
9 make_option(c("--input_norm"), action="store", dest="input_norm", help="30 year normals temperature data for selected station"), 10 make_option(c("--input_norm"), action="store", dest="input_norm", help="30 year normals temperature data for selected station"),
10 make_option(c("--input_ytd"), action="store", dest="input_ytd", default=NULL, help="Year-to-date temperature data for selected location"), 11 make_option(c("--input_ytd"), action="store", dest="input_ytd", default=NULL, help="Year-to-date temperature data for selected location"),
11 make_option(c("--insect"), action="store", dest="insect", help="Insect name"), 12 make_option(c("--insect"), action="store", dest="insect", help="Insect name"),
12 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), 13 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"),
13 make_option(c("--life_stages"), action="store", dest="life_stages", help="Selected life stages for plotting"), 14 make_option(c("--life_stages"), action="store", dest="life_stages", help="Selected life stages for plotting"),
22 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), 23 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
23 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), 24 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
24 make_option(c("--plot_generations_separately"), action="store", dest="plot_generations_separately", help="Plot Plot P, F1 and F2 as separate lines or pool across them"), 25 make_option(c("--plot_generations_separately"), action="store", dest="plot_generations_separately", help="Plot Plot P, F1 and F2 as separate lines or pool across them"),
25 make_option(c("--plot_std_error"), action="store", dest="plot_std_error", help="Plot Standard error"), 26 make_option(c("--plot_std_error"), action="store", dest="plot_std_error", help="Plot Standard error"),
26 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), 27 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
28 make_option(c("--start_date"), action="store", dest="start_date", default=NULL, help="Start date for custom date interval"),
27 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") 29 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)")
28 ) 30 )
29 31
30 parser <- OptionParser(usage="%prog [options] file", option_list=option_list); 32 parser <- OptionParser(usage="%prog [options] file", option_list=option_list);
31 args <- parse_args(parser, positional_arguments=TRUE); 33 args <- parse_args(parser, positional_arguments=TRUE);
32 opt <- args$options; 34 opt <- args$options;
33 35
34 add_daylight_length = function(temperature_data_frame, num_rows) { 36 add_daylight_length = function(temperature_data_frame) {
35 # Return a vector of daylight length (photoperido profile) for 37 # Return temperature_data_frame with an added column
36 # the number of days specified in the input_ytd temperature data 38 # of daylight length (photoperido profile).
37 # (from Forsythe 1995). 39 num_rows = dim(temperature_data_frame)[1];
40 # From Forsythe 1995.
38 p = 0.8333; 41 p = 0.8333;
39 latitude = temperature_data_frame$LATITUDE[1]; 42 latitude = temperature_data_frame$LATITUDE[1];
40 daylight_length_vector = NULL; 43 daylight_length_vector = NULL;
41 for (i in 1:num_rows) { 44 for (i in 1:num_rows) {
42 # Get the day of the year from the current row 45 # Get the day of the year from the current row
59 # Append vector vec as a new column to data_frame. 62 # Append vector vec as a new column to data_frame.
60 data_frame[,num_columns+1] = vec; 63 data_frame[,num_columns+1] = vec;
61 # Reset the column names with the additional column for later access. 64 # Reset the column names with the additional column for later access.
62 colnames(data_frame) = append(current_column_names, new_column_name); 65 colnames(data_frame) = append(current_column_names, new_column_name);
63 return(data_frame); 66 return(data_frame);
67 }
68
69 extract_date_interval_rows = function(df, start_date, end_date) {
70 date_interval_rows = df[df$DATE >= start_date & df$DATE <= end_date];
71 return(date_interval_rows);
72 }
73
74 from_30_year_normals = function(norm_data_frame, start_date_doy, end_date_doy, year) {
75 # The data we want is fully contained within the 30 year normals data.
76 first_norm_row = which(norm_data_frame$DOY==start_date_doy);
77 last_norm_row = which(norm_data_frame$DOY==end_date_doy);
78 # Add 1 to the number of rows to ensure that the end date is included.
79 tmp_data_frame_rows = last_norm_row - first_norm_row + 1;
80 tmp_data_frame = get_new_temperature_data_frame(nrow=tmp_data_frame_rows);
81 j = 0;
82 for (i in first_norm_row:last_norm_row) {
83 j = j + 1;
84 tmp_data_frame[j,] = get_next_normals_row(norm_data_frame, year, i);
85 }
86 return (tmp_data_frame);
64 } 87 }
65 88
66 get_file_path = function(life_stage, base_name, life_stage_nymph=NULL, life_stage_adult=NULL) { 89 get_file_path = function(life_stage, base_name, life_stage_nymph=NULL, life_stage_adult=NULL) {
67 if (!is.null(life_stage_nymph)) { 90 if (!is.null(life_stage_nymph)) {
68 lsi = get_life_stage_index(life_stage, life_stage_nymph=life_stage_nymph); 91 lsi = get_life_stage_index(life_stage, life_stage_nymph=life_stage_nymph);
121 # F2 standard error. 144 # F2 standard error.
122 f2_se = apply(f2_replications, 1, sd) / sqrt(opt$replications); 145 f2_se = apply(f2_replications, 1, sd) / sqrt(opt$replications);
123 return(list(p_m, p_se, f1_m, f1_se, f2_m, f2_se)) 146 return(list(p_m, p_se, f1_m, f1_se, f2_m, f2_se))
124 } 147 }
125 148
126 get_next_normals_row = function(norm_data_frame, year, is_leap_year, index) { 149 get_new_norm_data_frame = function(is_leap_year, input_norm=NULL, nrow=0) {
150 # The input_norm data has the following 10 columns:
151 # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX
152 column_names = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX");
153 if (is.null(input_norm)) {
154 norm_data_frame = data.frame(matrix(ncol=10, nrow));
155 # Set the norm_data_frame column names for access.
156 colnames(norm_data_frame) = column_names;
157 } else {
158 norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=",");
159 # Set the norm_data_frame column names for access.
160 colnames(norm_data_frame) = column_names;
161 if (!is_leap_year) {
162 # All normals data includes Feb 29 which is row 60 in
163 # the data, so delete that row if we're not in a leap year.
164 norm_data_frame = norm_data_frame[-c(60),];
165 # Since we've removed row 60, we need to subtract 1 from
166 # each value in the DOY column of the data frame starting
167 # with the 60th row.
168 num_rows = dim(norm_data_frame)[1];
169 for (i in 60:num_rows) {
170 leap_year_doy = norm_data_frame$DOY[i];
171 non_leap_year_doy = leap_year_doy - 1;
172 norm_data_frame$DOY[i] = non_leap_year_doy;
173 }
174 }
175 }
176 return (norm_data_frame);
177 }
178
179 get_new_temperature_data_frame = function(input_ytd=NULL, nrow=0) {
180 # The input_ytd data has the following 6 columns:
181 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
182 if (is.null(input_ytd)) {
183 temperature_data_frame = data.frame(matrix(ncol=6, nrow));
184 } else {
185 temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=",");
186 }
187 colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX");
188 return(temperature_data_frame);
189 }
190
191 get_next_normals_row = function(norm_data_frame, year, index) {
127 # Return the next 30 year normals row formatted 192 # Return the next 30 year normals row formatted
128 # appropriately for the year-to-date data. 193 # appropriately for the year-to-date data.
129 latitude = norm_data_frame[index,"LATITUDE"][1]; 194 latitude = norm_data_frame[index,"LATITUDE"][1];
130 longitude = norm_data_frame[index,"LONGITUDE"][1]; 195 longitude = norm_data_frame[index,"LONGITUDE"][1];
131 # Format the date. 196 # Format the date.
132 mmdd = norm_data_frame[index,"MMDD"][1]; 197 mmdd = norm_data_frame[index,"MMDD"][1];
133 date_str = paste(year, mmdd, sep="-"); 198 date_str = paste(year, mmdd, sep="-");
134 doy = norm_data_frame[index,"DOY"][1]; 199 doy = norm_data_frame[index,"DOY"][1];
135 if (!is_leap_year) {
136 # Since all normals data includes Feb 29, we have to
137 # subtract 1 from DOY if we're not in a leap year since
138 # we removed the Feb 29 row from the data frame above.
139 doy = as.integer(doy) - 1;
140 }
141 tmin = norm_data_frame[index,"TMIN"][1]; 200 tmin = norm_data_frame[index,"TMIN"][1];
142 tmax = norm_data_frame[index,"TMAX"][1]; 201 tmax = norm_data_frame[index,"TMAX"][1];
143 return(list(latitude, longitude, date_str, doy, tmin, tmax)); 202 return(list(latitude, longitude, date_str, doy, tmin, tmax));
144 } 203 }
145 204
146 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { 205 get_temperature_at_hour = function(latitude, temperature_data_frame, row) {
147 # Base development threshold for Brown Marmorated Stink Bug 206 # Base development threshold for Brown Marmorated Stink Bug
148 # insect phenology model. 207 # insect phenology model.
149 threshold = 14.17; 208 threshold = 14.17;
150 # Minimum temperature for current row. 209 # Minimum temperature for current row.
151 curr_min_temp = temperature_data_frame$TMIN[row]; 210 curr_min_temp = temperature_data_frame$TMIN[row];
212 averages = sum(dh) / 24; 271 averages = sum(dh) / 24;
213 } 272 }
214 return(c(curr_mean_temp, averages)) 273 return(c(curr_mean_temp, averages))
215 } 274 }
216 275
217 get_tick_index = function(index, last_tick, ticks, month_labels) { 276 get_tick_index = function(index, last_tick, ticks, tick_labels, tick_sep) {
218 # The R code tries hard not to draw overlapping tick labels, and so 277 # The R code tries hard not to draw overlapping tick labels, and so
219 # will omit labels where they would abut or overlap previously drawn 278 # will omit labels where they would abut or overlap previously drawn
220 # labels. This can result in, for example, every other tick being 279 # labels. This can result in, for example, every other tick being
221 # labelled. We'll keep track of the last tick to make sure all of 280 # labelled. We'll keep track of the last tick to make sure all of
222 # the month labels are displayed, and missing ticks are restricted 281 # the month labels are displayed, and missing ticks are restricted
223 # to Sundays which have no labels anyway. 282 # to Sundays which have no labels anyway.
224 if (last_tick==0) { 283 if (last_tick==0) {
225 return(length(ticks)+1); 284 return(length(ticks)+1);
226 } 285 }
227 last_saved_tick = ticks[[length(ticks)]]; 286 last_saved_tick = ticks[[length(ticks)]];
228 if (index-last_saved_tick<3) { 287 if (index-last_saved_tick<tick_sep) {
229 last_saved_month = month_labels[[length(month_labels)]]; 288 last_saved_month = tick_labels[[length(tick_labels)]];
230 if (last_saved_month=="") { 289 if (last_saved_month=="") {
231 # We're safe overwriting a tick 290 # We're safe overwriting a tick
232 # with no label (i.e., a Sunday tick). 291 # with no label (i.e., a Sunday tick).
233 return(length(ticks)); 292 return(length(ticks));
234 } else { 293 } else {
246 } else { 305 } else {
247 return(365); 306 return(365);
248 } 307 }
249 } 308 }
250 309
251 get_x_axis_ticks_and_labels = function(temperature_data_frame, num_rows, start_doy_ytd, end_doy_ytd) { 310 get_x_axis_ticks_and_labels = function(temperature_data_frame, prepend_end_doy_norm, append_start_doy_norm, date_interval) {
252 # Keep track of the years to see if spanning years. 311 # Generate a list of ticks and labels for plotting the x axis.
253 month_labels = list(); 312 if (prepend_end_doy_norm > 0) {
313 prepend_end_norm_row = which(temperature_data_frame$DOY==prepend_end_doy_norm);
314 } else {
315 prepend_end_norm_row = 0;
316 }
317 if (append_start_doy_norm > 0) {
318 append_start_norm_row = which(temperature_data_frame$DOY==append_start_doy_norm);
319 } else {
320 append_start_norm_row = 0;
321 }
322 num_rows = dim(temperature_data_frame)[1];
323 tick_labels = list();
254 ticks = list(); 324 ticks = list();
255 current_month_label = NULL; 325 current_month_label = NULL;
256 last_tick = 0; 326 last_tick = 0;
327 if (date_interval) {
328 tick_sep = 0;
329 } else {
330 tick_sep = 3;
331 }
257 for (i in 1:num_rows) { 332 for (i in 1:num_rows) {
258 if (start_doy_ytd > 1 & i==start_doy_ytd-1) { 333 # Get the year and month from the date which
334 # has the format YYYY-MM-DD.
335 date = format(temperature_data_frame$DATE[i]);
336 # Get the month label.
337 items = strsplit(date, "-")[[1]];
338 month = items[2];
339 month_label = month.abb[as.integer(month)];
340 day = as.integer(items[3]);
341 doy = as.integer(temperature_data_frame$DOY[i]);
342 # We're plotting the entire year, so ticks will
343 # occur on Sundays and the first of each month.
344 if (i == prepend_end_norm_row) {
259 # Add a tick for the end of the 30 year normnals data 345 # Add a tick for the end of the 30 year normnals data
260 # that was prepended to the year-to-date data. 346 # that was prepended to the year-to-date data.
261 tick_index = get_tick_index(i, last_tick, ticks, month_labels) 347 label_str = "End prepended 30 year normals";
348 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
262 ticks[tick_index] = i; 349 ticks[tick_index] = i;
263 month_labels[tick_index] = "End prepended 30 year normals"; 350 if (date_interval) {
351 # Append the day to label_str
352 tick_labels[tick_index] = paste(label_str, day, sep=" ");
353 } else {
354 tick_labels[tick_index] = label_str;
355 }
264 last_tick = i; 356 last_tick = i;
265 } else if (end_doy_ytd > 0 & i==end_doy_ytd+1) { 357 } else if (doy == append_start_doy_norm) {
266 # Add a tick for the start of the 30 year normnals data 358 # Add a tick for the start of the 30 year normnals data
267 # that was appended to the year-to-date data. 359 # that was appended to the year-to-date data.
268 tick_index = get_tick_index(i, last_tick, ticks, month_labels) 360 label_str = "Start appended 30 year normals";
361 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
269 ticks[tick_index] = i; 362 ticks[tick_index] = i;
270 month_labels[tick_index] = "Start appended 30 year normals"; 363 if (!identical(current_month_label, month_label)) {
364 # Append the month to label_str.
365 label_str = paste(label_str, month_label, spe=" ");
366 current_month_label = month_label;
367 }
368 if (date_interval) {
369 # Append the day to label_str
370 label_str = paste(label_str, day, sep=" ");
371 }
372 tick_labels[tick_index] = label_str;
271 last_tick = i; 373 last_tick = i;
272 } else if (i==num_rows) { 374 } else if (i==num_rows) {
273 # Add a tick for the last day of the year. 375 # Add a tick for the last day of the year.
274 tick_index = get_tick_index(i, last_tick, ticks, month_labels) 376 label_str = "";
377 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
275 ticks[tick_index] = i; 378 ticks[tick_index] = i;
276 month_labels[tick_index] = ""; 379 if (!identical(current_month_label, month_label)) {
277 last_tick = i; 380 # Append the month to label_str.
381 label_str = month_label;
382 current_month_label = month_label;
383 }
384 if (date_interval) {
385 # Append the day to label_str
386 label_str = paste(label_str, day, sep=" ");
387 }
388 tick_labels[tick_index] = label_str;
278 } else { 389 } else {
279 # Get the year and month from the date which
280 # has the format YYYY-MM-DD.
281 date = format(temperature_data_frame$DATE[i]);
282 # Get the month label.
283 items = strsplit(date, "-")[[1]];
284 month = items[2];
285 month_label = month.abb[as.integer(month)];
286 if (!identical(current_month_label, month_label)) { 390 if (!identical(current_month_label, month_label)) {
287 # Add an x-axis tick for the month. 391 # Add a tick for the month.
288 tick_index = get_tick_index(i, last_tick, ticks, month_labels) 392 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
289 ticks[tick_index] = i; 393 ticks[tick_index] = i;
290 month_labels[tick_index] = month_label; 394 if (date_interval) {
395 # Append the day to the month.
396 tick_labels[tick_index] = paste(month_label, day, sep=" ");
397 } else {
398 tick_labels[tick_index] = month_label;
399 }
291 current_month_label = month_label; 400 current_month_label = month_label;
292 last_tick = i; 401 last_tick = i;
293 } 402 }
294 tick_index = get_tick_index(i, last_tick, ticks, month_labels) 403 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
295 if (!is.null(tick_index)) { 404 if (!is.null(tick_index)) {
296 # Get the day. 405 if (date_interval) {
297 day = weekdays(as.Date(date)); 406 # Add a tick for every day. The first tick is the
298 if (day=="Sunday") { 407 # month label, so add a tick only if i is not 1
299 # Add an x-axis tick if we're on a Sunday. 408 if (i>1 & day>1) {
300 ticks[tick_index] = i; 409 tick_index = get_tick_index(i, last_tick, ticks, tick_labels, tick_sep)
301 # Add a blank month label so it is not displayed. 410 ticks[tick_index] = i;
302 month_labels[tick_index] = ""; 411 # Add the day as the label.
303 last_tick = i; 412 tick_labels[tick_index] = day;
304 } 413 last_tick = i;
305 } 414 }
306 } 415 } else {
307 } 416 # Get the day.
308 return(list(ticks, month_labels)); 417 day = weekdays(as.Date(date));
418 if (day=="Sunday") {
419 # Add a tick if we're on a Sunday.
420 ticks[tick_index] = i;
421 # Add a blank month label so it is not displayed.
422 tick_labels[tick_index] = "";
423 last_tick = i;
424 }
425 }
426 }
427 }
428 }
429 return(list(ticks, tick_labels));
430 }
431
432 get_year_from_date = function(date_str) {
433 date_str_items = strsplit(date_str, "-")[[1]];
434 return (date_str_items[1]);
309 } 435 }
310 436
311 is_leap_year = function(date_str) { 437 is_leap_year = function(date_str) {
312 # Extract the year from the date_str. 438 # Extract the year from the date_str.
313 date = format(date_str); 439 date = format(date_str);
351 mortality.probability = temperature * 0.0008 + 0.03; 477 mortality.probability = temperature * 0.0008 + 0.03;
352 } 478 }
353 return(mortality.probability); 479 return(mortality.probability);
354 } 480 }
355 481
356 parse_input_data = function(input_ytd, input_norm, num_days_ytd, location) { 482 parse_input_data = function(input_ytd, input_norm, location, start_date, end_date) {
483 # The end DOY for norm data prepended to ytd data.
484 prepend_end_doy_norm = 0;
485 # The start DOY for norm data appended to ytd data.
486 append_start_doy_norm = 0;
487 if (is.null(start_date) && is.null(end_date)) {
488 # We're not dealing with a date interval.
489 date_interval = FALSE;
490 if (is.null(input_ytd)) {
491 # Base all dates on the current date since 30 year
492 # normals data does not include any dates.
493 year = format(Sys.Date(), "%Y");
494 }
495 } else {
496 date_interval = TRUE;
497 year = get_year_from_date(start_date);
498 # Get the DOY for start_date and end_date.
499 start_date_doy = as.integer(strftime(start_date, format="%j"));
500 end_date_doy = as.integer(strftime(end_date, format="%j"));
501 }
357 if (is.null(input_ytd)) { 502 if (is.null(input_ytd)) {
358 # We're analysing only the 30 year normals data, so create an empty 503 # We're processing only the 30 year normals data.
504 processing_year_to_date_data = FALSE;
505 if (is.null(start_date) && is.null(end_date)) {
506 # We're processing the entire year, so we can
507 # set the start_date to Jan 1.
508 start_date = paste(year, "01", "01", sep="-");
509 }
510 } else {
511 processing_year_to_date_data = TRUE;
512 # Read the input_ytd temperature data file into a data frame.
513 temperature_data_frame = get_new_temperature_data_frame(input_ytd=input_ytd);
514 num_ytd_rows = dim(temperature_data_frame)[1];
515 if (!date_interval) {
516 start_date = temperature_data_frame$DATE[1];
517 year = get_year_from_date(start_date);
518 }
519 }
520 # See if we're in a leap year.
521 is_leap_year = is_leap_year(start_date);
522 # Read the input_norm temperature datafile into a data frame.
523 norm_data_frame = get_new_norm_data_frame(is_leap_year, input_norm=input_norm);
524 if (processing_year_to_date_data) {
525 if (date_interval) {
526 # We're plotting a date interval.
527 start_date_ytd_row = which(temperature_data_frame$DATE==start_date);
528 if (length(start_date_ytd_row) > 0) {
529 # The start date is contained within the input_ytd data.
530 start_date_ytd_row = start_date_ytd_row[1];
531 start_doy_ytd = as.integer(temperature_data_frame$DOY[start_date_ytd_row]);
532 } else {
533 # The start date is contained within the input_norm data.
534 start_date_ytd_row = 0;
535 start_date_norm_row = which(norm_data_frame$DOY==start_date_doy);
536 }
537 end_date_ytd_row = which(temperature_data_frame$DATE==end_date);
538 if (length(end_date_ytd_row) > 0) {
539 end_date_ytd_row = end_date_ytd_row[1];
540 # The end date is contained within the input_ytd data.
541 end_doy_ytd = as.integer(temperature_data_frame$DOY[end_date_ytd_row]);
542 } else {
543 end_date_ytd_row = 0;
544 }
545 } else {
546 # We're plotting an entire year.
547 # Get the start date and end date from temperature_data_frame.
548 start_date_ytd_row = 1;
549 # Temporarily set start_date to get the year.
550 start_date = temperature_data_frame$DATE[1];
551 end_date_ytd_row = num_ytd_rows;
552 end_date = temperature_data_frame$DATE[num_ytd_rows];
553 date_str = format(start_date);
554 # Extract the year from the start date.
555 date_str_items = strsplit(date_str, "-")[[1]];
556 # Get the year.
557 year = date_str_items[1];
558 # Properly set the start_date to be Jan 1 of the year.
559 start_date = paste(year, "01", "01", sep="-");
560 # Properly set the end_date to be Dec 31 of the year.
561 end_date = paste(year, "12", "31", sep="-");
562 # Save the first DOY to later check if start_date is Jan 1.
563 start_doy_ytd = as.integer(temperature_data_frame$DOY[1]);
564 end_doy_ytd = as.integer(temperature_data_frame$DOY[num_ytd_rows]);
565 }
566 } else {
567 # We're processing only the 30 year normals data, so create an empty
359 # data frame for containing temperature data after it is converted 568 # data frame for containing temperature data after it is converted
360 # from the 30 year normals format to the year-to-date format. 569 # from the 30 year normals format to the year-to-date format.
361 temperature_data_frame = data.frame(matrix(ncol=6, nrow=0)); 570 temperature_data_frame = get_new_temperature_data_frame();
362 colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); 571 if (date_interval) {
363 # Base all dates on the current date since 30 year 572 # We're plotting a date interval.
364 # normals data does not include any dates. 573 # Extract the year, month and day from the start date.
365 year = format(Sys.Date(), "%Y"); 574 start_date_str = format(start_date);
366 start_date = paste(year, "01", "01", sep="-"); 575 start_date_str_items = strsplit(start_date_str, "-")[[1]];
367 end_date = paste(year, "12", "31", sep="-"); 576 year = start_date_str_items[1];
368 # Set invalid start and end DOY. 577 start_date_month = start_date_str_items[2];
369 start_doy_ytd = 0; 578 start_date_day = start_date_str_items[3];
370 end_doy_ytd = 0; 579 start_date = paste(year, start_date_month, start_date_day, sep="-");
580 # Extract the month and day from the end date.
581 end_date_str = format(start_date);
582 end_date_str_items = strsplit(end_date_str, "-")[[1]];
583 end_date_month = end_date_str_items[2];
584 end_date_day = end_date_str_items[3];
585 end_date = paste(year, end_date_month, end_date_day, sep="-");
586 } else {
587 # We're plotting an entire year.
588 start_date = paste(year, "01", "01", sep="-");
589 end_date = paste(year, "12", "31", sep="-");
590 }
591 }
592 # Set the location to be the station name if the user elected not to enter it.
593 if (is.null(location) | length(location) == 0) {
594 location = norm_data_frame$NAME[1];
595 }
596 if (processing_year_to_date_data) {
597 # Merge the year-to-date data with the 30 year normals data.
598 if (date_interval) {
599 # The values of start_date_ytd_row and end_date_ytd_row were set above.
600 if (start_date_ytd_row > 0 & end_date_ytd_row > 0) {
601 # The date interval is contained within the input_ytd
602 # data, so we don't need to merge the 30 year normals data.
603 temperature_data_frame = temperature_data_frame[start_date_ytd_row:end_date_ytd_row,];
604 } else if (start_date_ytd_row == 0 & end_date_ytd_row > 0) {
605 # The date interval starts in input_norm and ends in
606 # input_ytd, so prepend appropriate rows from input_norm
607 # to appropriate rows from input_ytd.
608 first_norm_row = which(norm_data_frame$DOY==start_date_doy);
609 # Get the first DOY from temperature_data_frame.
610 first_ytd_doy = temperature_data_frame$DOY[1];
611 # End DOY of input_norm data prepended to input_ytd.
612 prepend_end_doy_norm = first_ytd_doy - 1;
613 # Get the number of rows for the restricted date interval
614 # that are contained in temperature_data_frame.
615 num_temperature_data_frame_rows = end_date_ytd_row;
616 # Get the last row needed from the 30 year normals data.
617 last_norm_row = which(norm_data_frame$DOY==prepend_end_doy_norm);
618 # Get the number of rows for the restricted date interval
619 # that are contained in norm_data_frame.
620 num_norm_data_frame_rows = last_norm_row - first_norm_row;
621 # Create a temporary data frame to contain the 30 year normals
622 # data from the start date to the date immediately prior to the
623 # first row of the input_ytd data.
624 tmp_norm_data_frame = get_new_temperature_data_frame(nrow=num_temperature_data_frame_rows+num_norm_data_frame_rows);
625 j = 1;
626 for (i in first_norm_row:last_norm_row) {
627 # Populate the temp_data_frame row with
628 # values from norm_data_frame.
629 tmp_norm_data_frame[j,] = get_next_normals_row(norm_data_frame, year, i);
630 j = j + 1;
631 }
632 # Create a second temporary data frame containing the
633 # appropriate rows from temperature_data_frame.
634 tmp_temperature_data_frame = temperature_data_frame[1:num_temperature_data_frame_rows,];
635 # Merge the 2 temporary data frames.
636 temperature_data_frame = rbind(tmp_norm_data_frame, tmp_temperature_data_frame);
637 } else if (start_date_ytd_row > 0 & end_date_ytd_row == 0) {
638 # The date interval starts in input_ytd and ends in input_norm,
639 # so append appropriate rows from input_norm to appropriate rows
640 # from input_ytd. First, get the number of rows for the restricted
641 # date interval that are contained in temperature_data_frame.
642 num_temperature_data_frame_rows = num_ytd_rows - start_date_ytd_row + 1;
643 # Get the DOY of the last row in the input_ytd data.
644 last_ytd_doy = temperature_data_frame$DOY[num_ytd_rows];
645 # Get the DOYs for the first and last rows from norm_data_frame
646 # that will be appended to temperature_data_frame.
647 append_start_doy_norm = last_ytd_doy + 1;
648 # Get the row from norm_data_frame containing first_norm_doy.
649 first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm);
650 # Get the row from norm_data_frame containing end_date_doy.
651 last_norm_row = which(norm_data_frame$DOY == end_date_doy);
652 # Get the number of rows for the restricted date interval
653 # that are contained in norm_data_frame.
654 num_norm_data_frame_rows = last_norm_row - first_norm_row;
655 # Create a temporary data frame to contain the data
656 # taken from both temperature_data_frame and norm_data_frame
657 # for the date interval.
658 tmp_data_frame = get_new_temperature_data_frame(nrow=num_temperature_data_frame_rows+num_norm_data_frame_rows);
659 # Populate tmp_data_frame with the appropriate rows from temperature_data_frame.
660 j = start_date_ytd_row;
661 for (i in 1:num_temperature_data_frame_rows) {
662 tmp_data_frame[i,] = temperature_data_frame[j,];
663 j = j + 1;
664 }
665 # Apppend the appropriate rows from norm_data_frame to tmp_data_frame.
666 current_iteration = num_temperature_data_frame_rows + 1;
667 num_iterations = current_iteration + num_norm_data_frame_rows;
668 j = first_norm_row;
669 for (i in current_iteration:num_iterations) {
670 tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, j);
671 j = j + 1;
672 }
673 temperature_data_frame = tmp_data_frame[,];
674 } else if (start_date_ytd_row == 0 & end_date_ytd_row == 0) {
675 # The date interval is contained witin input_norm.
676 temperature_data_frame = from_30_year_normals(norm_data_frame, start_date_doy, end_date_doy, year);
677 }
678 } else {
679 # We're plotting an entire year.
680 if (start_doy_ytd > 1) {
681 # The input_ytd data starts after Jan 1, so prepend
682 # appropriate rows from input_norm to temperature_data_frame.
683 prepend_end_doy_norm = start_doy_ytd - 1;
684 last_norm_row = which(norm_data_frame$DOY == prepend_end_doy_norm);
685 # Create a temporary data frame to contain the input_norm data
686 # from Jan 1 to the date immediately prior to start_date.
687 tmp_data_frame = temperature_data_frame[FALSE,];
688 # Populate tmp_data_frame with appropriate rows from norm_data_frame.
689 for (i in 1:last_norm_row) {
690 tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i);
691 }
692 # Merge the temporary data frame with temperature_data_frame.
693 temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame);
694 }
695 # Set the value of total_days.
696 total_days = get_total_days(is_leap_year);
697 if (end_doy_ytd < total_days) {
698 # Define the next row for the year-to-date data from the 30 year normals data.
699 append_start_doy_norm = end_doy_ytd + 1;
700 first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm);
701 # Append the 30 year normals data to the year-to-date data.
702 for (i in first_norm_row:total_days) {
703 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i);
704 }
705 }
706 }
371 } else { 707 } else {
372 # Read the input_ytd temperature datafile into a data frame. 708 # We're processing only the 30 year normals data.
373 # The input_ytd data has the following 6 columns: 709 if (date_interval) {
374 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX 710 # Populate temperature_data_frame from norm_data_frame.
375 temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); 711 temperature_data_frame = from_30_year_normals(norm_data_frame, start_date_doy, end_date_doy, year);
376 # Set the temperature_data_frame column names for access. 712 } else {
377 colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); 713 total_days = get_total_days(is_leap_year);
378 # Get the start date. 714 for (i in 1:total_days) {
379 start_date = temperature_data_frame$DATE[1]; 715 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i);
380 end_date = temperature_data_frame$DATE[num_days_ytd]; 716 }
381 # Extract the year from the start date.
382 date_str = format(start_date);
383 date_str_items = strsplit(date_str, "-")[[1]];
384 year = date_str_items[1];
385 # Save the first DOY to later check if start_date is Jan 1.
386 start_doy_ytd = as.integer(temperature_data_frame$DOY[1]);
387 end_doy_ytd = as.integer(temperature_data_frame$DOY[num_days_ytd]);
388 }
389 # See if we're in a leap year.
390 is_leap_year = is_leap_year(start_date);
391 # Get the number of days in the year.
392 total_days = get_total_days(is_leap_year);
393 # Read the input_norm temperature datafile into a data frame.
394 # The input_norm data has the following 10 columns:
395 # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX
396 norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=",");
397 # Set the norm_data_frame column names for access.
398 colnames(norm_data_frame) = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX");
399 # All normals data includes Feb 29 which is row 60 in
400 # the data, so delete that row if we're not in a leap year.
401 if (!is_leap_year) {
402 norm_data_frame = norm_data_frame[-c(60),];
403 }
404 # Set the location to be the station name if the user elected no to enter it.
405 if (is.null(location) | length(location)==0) {
406 location = norm_data_frame$NAME[1];
407 }
408 if (is.null(input_ytd)) {
409 # Convert the 30 year normals data to the year-to-date format.
410 for (i in 1:total_days) {
411 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i);
412 }
413 } else {
414 # Merge the year-to-date data with the 30 year normals data.
415 if (start_doy_ytd > 1) {
416 # The year-to-date data starts after Jan 1, so create a
417 # temporary data frame to contain the 30 year normals data
418 # from Jan 1 to the date immediately prior to start_date.
419 tmp_data_frame = temperature_data_frame[FALSE,];
420 for (i in 1:start_doy_ytd-1) {
421 tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i);
422 }
423 # Next merge the temporary data frame with the year-to-date data frame.
424 temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame);
425 }
426 # Define the next row for the year-to-date data from the 30 year normals data.
427 first_normals_append_row = end_doy_ytd + 1;
428 # Append the 30 year normals data to the year-to-date data.
429 for (i in first_normals_append_row:total_days) {
430 temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i);
431 } 717 }
432 } 718 }
433 # Add a column containing the daylight length for each day. 719 # Add a column containing the daylight length for each day.
434 temperature_data_frame = add_daylight_length(temperature_data_frame, total_days); 720 temperature_data_frame = add_daylight_length(temperature_data_frame);
435 return(list(temperature_data_frame, start_date, end_date, start_doy_ytd, end_doy_ytd, is_leap_year, total_days, location)); 721 return(list(temperature_data_frame, start_date, end_date, prepend_end_doy_norm, append_start_doy_norm, is_leap_year, location));
436 } 722 }
437 723
438 render_chart = function(ticks, date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval, 724 render_chart = function(ticks, date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval,
439 replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL, 725 replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL,
440 life_stages_adult=NULL, life_stages_nymph=NULL) { 726 life_stages_adult=NULL, life_stages_nymph=NULL) {
517 lines(days, group3-group3_std_error, col=4, lty=2); 803 lines(days, group3-group3_std_error, col=4, lty=2);
518 } 804 }
519 } 805 }
520 } 806 }
521 807
808 stop_err = function(msg) {
809 cat(msg, file=stderr());
810 quit(save="no", status=1);
811 }
812
813 validate_date = function(date_str) {
814 valid_date = as.Date(date_str, format="%Y-%m-%d");
815 if( class(valid_date)=="try-error" || is.na(valid_date)) {
816 msg = paste("Invalid date: ", date_str, ", valid date format is yyyy-mm-dd.", sep="");
817 stop_err(msg);
818 }
819 return(valid_date);
820 }
821
822 if (is.null(opt$input_ytd)) {
823 processing_year_to_date_data = FALSE;
824 } else {
825 processing_year_to_date_data = TRUE;
826 }
522 # Determine if we're plotting generations separately. 827 # Determine if we're plotting generations separately.
523 if (opt$plot_generations_separately=="yes") { 828 if (opt$plot_generations_separately=="yes") {
524 plot_generations_separately = TRUE; 829 plot_generations_separately = TRUE;
525 } else { 830 } else {
526 plot_generations_separately = FALSE; 831 plot_generations_separately = FALSE;
527 } 832 }
528 # Display the total number of days in the Galaxy history item blurb.
529 cat("Year-to-date number of days: ", opt$num_days_ytd, "\n");
530
531 # Parse the inputs. 833 # Parse the inputs.
532 data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$num_days_ytd, opt$location); 834 data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$location, opt$start_date, opt$end_date);
533 temperature_data_frame = data_list[[1]]; 835 temperature_data_frame = data_list[[1]];
534 # Information needed for plots. 836 # Information needed for plots, some of these values are
837 # being reset here since in some case they were set above.
535 start_date = data_list[[2]]; 838 start_date = data_list[[2]];
536 end_date = data_list[[3]]; 839 end_date = data_list[[3]];
537 start_doy_ytd = data_list[[4]]; 840 prepend_end_doy_norm = data_list[[4]];
538 end_doy_ytd = data_list[[5]]; 841 append_start_doy_norm = data_list[[5]];
539 is_leap_year = data_list[[6]]; 842 is_leap_year = data_list[[6]];
540 total_days = data_list[[7]]; 843 location = data_list[[7]];
541 total_days_vector = c(1:total_days); 844
542 location = data_list[[8]]; 845 if (is.null(opt$start_date) && is.null(opt$end_date)) {
543 846 # We're plotting an entire year.
847 date_interval = FALSE;
848 # Display the total number of days in the Galaxy history item blurb.
849 if (processing_year_to_date_data) {
850 cat("Number of days year-to-date: ", opt$num_days_ytd, "\n");
851 } else {
852 if (is_leap_year) {
853 num_days = 366;
854 } else {
855 num_days = 365;
856 }
857 cat("Number of days in year: ", num_days, "\n");
858 }
859 } else {
860 # FIXME: currently custom date fields are free text, but
861 # Galaxy should soon include support for a date selector
862 # at which point this tool should be enhanced to use it.
863 # Validate start_date.
864 date_interval = TRUE;
865 # Calaculate the number of days in the date interval rather
866 # than using the number of rows in the input temperature data.
867 start_date = validate_date(opt$start_date);
868 # Validate end_date.
869 end_date = validate_date(opt$end_date);
870 if (start_date >= end_date) {
871 stop_err("The start date must be between 1 and 50 days before the end date when setting date intervals for plots.");
872 }
873 # Calculate the number of days in the date interval.
874 num_days = difftime(end_date, start_date, units=c("days"));
875 # Add 1 to the number of days to make the dates inclusive. For
876 # example, if the user enters a date range of 2018-01-01 to
877 # 2018-01-31, they likely expect the end date to be included.
878 num_days = num_days + 1;
879 if (num_days > 50) {
880 # We need to restrict date intervals since
881 # plots render tick marks for each day.
882 stop_err("Date intervals for plotting cannot exceed 50 days.");
883 }
884 # Display the total number of days in the Galaxy history item blurb.
885 cat("Number of days in date interval: ", num_days, "\n");
886 }
544 # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately. 887 # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately.
545 if (plot_generations_separately) { 888 if (plot_generations_separately) {
546 temperature_data_frame_P = data.frame(temperature_data_frame); 889 temperature_data_frame_P = data.frame(temperature_data_frame);
547 temperature_data_frame_F1 = data.frame(temperature_data_frame); 890 temperature_data_frame_F1 = data.frame(temperature_data_frame);
548 temperature_data_frame_F2 = data.frame(temperature_data_frame); 891 temperature_data_frame_F2 = data.frame(temperature_data_frame);
549 } 892 }
550 893
551 # Get the ticks date labels for plots. 894 # Get the ticks date labels for plots.
552 ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, total_days, start_doy_ytd, end_doy_ytd); 895 ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, prepend_end_doy_norm, append_start_doy_norm, date_interval);
553 ticks = c(unlist(ticks_and_labels[1])); 896 ticks = c(unlist(ticks_and_labels[1]));
554 date_labels = c(unlist(ticks_and_labels[2])); 897 date_labels = c(unlist(ticks_and_labels[2]));
555 # All latitude values are the same, so get the value for plots from the first row. 898 # All latitude values are the same, so get the value for plots from the first row.
556 latitude = temperature_data_frame$LATITUDE[1]; 899 latitude = temperature_data_frame$LATITUDE[1];
557 900
613 process_total_adults = TRUE; 956 process_total_adults = TRUE;
614 } 957 }
615 } 958 }
616 } 959 }
617 # Initialize matrices. 960 # Initialize matrices.
961 total_days = dim(temperature_data_frame)[1];
618 if (process_eggs) { 962 if (process_eggs) {
619 Eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); 963 Eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications);
620 } 964 }
621 if (process_young_nymphs | process_total_nymphs) { 965 if (process_young_nymphs | process_total_nymphs) {
622 YoungNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); 966 YoungNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications);
776 for (row in 1:total_days) { 1120 for (row in 1:total_days) {
777 # Get the integer day of the year for the current row. 1121 # Get the integer day of the year for the current row.
778 doy = temperature_data_frame$DOY[row]; 1122 doy = temperature_data_frame$DOY[row];
779 # Photoperiod in the day. 1123 # Photoperiod in the day.
780 photoperiod = temperature_data_frame$DAYLEN[row]; 1124 photoperiod = temperature_data_frame$DAYLEN[row];
781 temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row, total_days); 1125 temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row);
782 mean.temp = temp.profile[1]; 1126 mean.temp = temp.profile[1];
783 averages.temp = temp.profile[2]; 1127 averages.temp = temp.profile[2];
784 averages.day[row] = averages.temp; 1128 averages.day[row] = averages.temp;
785 # Trash bin for death. 1129 # Trash bin for death.
786 death.vector = NULL; 1130 death.vector = NULL;
1457 # Save the analyzed data for generation F2. 1801 # Save the analyzed data for generation F2.
1458 file_path = paste("output_data_dir", "03_generation_F2.csv", sep="/"); 1802 file_path = paste("output_data_dir", "03_generation_F2.csv", sep="/");
1459 write.csv(temperature_data_frame_F2, file=file_path, row.names=F); 1803 write.csv(temperature_data_frame_F2, file=file_path, row.names=F);
1460 } 1804 }
1461 1805
1806 total_days_vector = c(1:dim(temperature_data_frame)[1]);
1462 if (plot_generations_separately) { 1807 if (plot_generations_separately) {
1463 for (life_stage in life_stages) { 1808 for (life_stage in life_stages) {
1464 if (life_stage == "Egg") { 1809 if (life_stage == "Egg") {
1465 # Start PDF device driver. 1810 # Start PDF device driver.
1466 dev.new(width=20, height=30); 1811 dev.new(width=20, height=30);