Mercurial > repos > greg > insect_phenology_model
comparison insect_phenology_model.R @ 6:fe3f86012394 draft
Uploaded
author | greg |
---|---|
date | Wed, 06 Dec 2017 10:07:21 -0500 |
parents | 1878a03f9c9f |
children | 37f1ad91a949 |
comparison
equal
deleted
inserted
replaced
5:1878a03f9c9f | 6:fe3f86012394 |
---|---|
1 #!/usr/bin/env Rscript | 1 #!/usr/bin/env Rscript |
2 | 2 |
3 suppressPackageStartupMessages(library("optparse")) | 3 suppressPackageStartupMessages(library("optparse")) |
4 | 4 |
5 option_list <- list( | 5 option_list <- list( |
6 make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"), | 6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), |
7 make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"), | 7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), |
8 make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"), | 8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), |
9 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), | 9 make_option(c("--input"), action="store", dest="input", help="Temperature data for selected location"), |
10 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), | 10 make_option(c("--insect"), action="store", dest="insect", help="Insect name"), |
11 make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), | 11 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), |
12 make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"), | 12 make_option(c("--location"), action="store", dest="location", help="Selected location"), |
13 make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"), | 13 make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), |
14 make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), | 14 make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), |
15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), | 15 make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), |
16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), | 16 make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), |
17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), | 17 make_option(c("--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), |
18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), | 18 make_option(c("--output"), action="store", dest="output", help="Output dataset"), |
19 make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"), | 19 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), |
20 make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"), | 20 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), |
21 make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)"), | 21 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), |
22 make_option(c("-x", "--insect"), action="store", dest="insect", help="Insect name") | 22 make_option(c("--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), |
23 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") | |
23 ) | 24 ) |
24 | 25 |
25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | 26 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) |
26 args <- parse_args(parser, positional_arguments=TRUE) | 27 args <- parse_args(parser, positional_arguments=TRUE) |
27 opt <- args$options | 28 opt <- args$options |
28 | |
29 parse_input_data = function(input_file, num_rows) { | |
30 # Read in the input temperature datafile into a data frame. | |
31 temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") | |
32 num_columns <- dim(temperature_data_frame)[2] | |
33 if (num_columns == 6) { | |
34 # The input data has the following 6 columns: | |
35 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX | |
36 # Set the column names for access when adding daylight length.. | |
37 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") | |
38 # Add a column containing the daylight length for each day. | |
39 temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) | |
40 # Reset the column names with the additional column for later access. | |
41 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") | |
42 } | |
43 return(temperature_data_frame) | |
44 } | |
45 | 29 |
46 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { | 30 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { |
47 # Return a vector of daylight length (photoperido profile) for | 31 # Return a vector of daylight length (photoperido profile) for |
48 # the number of days specified in the input temperature data | 32 # the number of days specified in the input temperature data |
49 # (from Forsythe 1995). | 33 # (from Forsythe 1995). |
55 # of the temperature data for computation. | 39 # of the temperature data for computation. |
56 doy <- temperature_data_frame$DOY[i] | 40 doy <- temperature_data_frame$DOY[i] |
57 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) | 41 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) |
58 phi <- asin(0.39795 * cos(theta)) | 42 phi <- asin(0.39795 * cos(theta)) |
59 # Compute the length of daylight for the day of the year. | 43 # Compute the length of daylight for the day of the year. |
60 daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))) | 44 darkness_length <- 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))) |
45 daylight_length_vector[i] <- 24 - darkness_length | |
61 } | 46 } |
62 # Append daylight_length_vector as a new column to temperature_data_frame. | 47 # Append daylight_length_vector as a new column to temperature_data_frame. |
63 temperature_data_frame[, num_columns+1] <- daylight_length_vector | 48 temperature_data_frame[, num_columns+1] <- daylight_length_vector |
64 return(temperature_data_frame) | 49 return(temperature_data_frame) |
65 } | 50 } |
66 | 51 |
52 dev.egg = function(temperature) { | |
53 dev.rate = -0.9843 * temperature + 33.438 | |
54 return(dev.rate) | |
55 } | |
56 | |
57 dev.emerg = function(temperature) { | |
58 emerg.rate <- -0.5332 * temperature + 24.147 | |
59 return(emerg.rate) | |
60 } | |
61 | |
62 dev.old = function(temperature) { | |
63 n34 <- -0.6119 * temperature + 17.602 | |
64 n45 <- -0.4408 * temperature + 19.036 | |
65 dev.rate = mean(n34 + n45) | |
66 return(dev.rate) | |
67 } | |
68 | |
69 dev.young = function(temperature) { | |
70 n12 <- -0.3728 * temperature + 14.68 | |
71 n23 <- -0.6119 * temperature + 25.249 | |
72 dev.rate = mean(n12 + n23) | |
73 return(dev.rate) | |
74 } | |
75 | |
67 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { | 76 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { |
68 # Base development threshold for Brown Marmolated Stink Bug | 77 # Base development threshold for Brown Marmolated Stink Bug |
69 # insect phenology model. | 78 # insect phenology model. |
70 # TODO: Pass insect on the command line to accomodate more | |
71 # the just the Brown Marmolated Stink Bub. | |
72 threshold <- 14.17 | 79 threshold <- 14.17 |
73 # Minimum temperature for current row. | 80 # Minimum temperature for current row. |
74 dnp <- temperature_data_frame$TMIN[row] | 81 curr_min_temp <- temperature_data_frame$TMIN[row] |
75 # Maximum temperature for current row. | 82 # Maximum temperature for current row. |
76 dxp <- temperature_data_frame$TMAX[row] | 83 curr_max_temp <- temperature_data_frame$TMAX[row] |
77 # Mean temperature for current row. | 84 # Mean temperature for current row. |
78 dmean <- 0.5 * (dnp + dxp) | 85 curr_mean_temp <- 0.5 * (curr_min_temp + curr_max_temp) |
79 # Initialize degree day accumulation | 86 # Initialize degree day accumulation |
80 dd <- 0 | 87 averages <- 0 |
81 if (dxp < threshold) { | 88 if (curr_max_temp < threshold) { |
82 dd <- 0 | 89 averages <- 0 |
83 } | 90 } |
84 else { | 91 else { |
85 # Initialize hourly temperature. | 92 # Initialize hourly temperature. |
86 T <- NULL | 93 T <- NULL |
87 # Initialize degree hour vector. | 94 # Initialize degree hour vector. |
96 b <- 2.20 | 103 b <- 2.20 |
97 # Sunrise time. | 104 # Sunrise time. |
98 risetime <- 12 - y / 2 | 105 risetime <- 12 - y / 2 |
99 # Sunset time. | 106 # Sunset time. |
100 settime <- 12 + y / 2 | 107 settime <- 12 + y / 2 |
101 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp | 108 ts <- (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp |
102 for (i in 1:24) { | 109 for (i in 1:24) { |
103 if (i > risetime && i < settime) { | 110 if (i > risetime && i < settime) { |
104 # Number of hours after Tmin until sunset. | 111 # Number of hours after Tmin until sunset. |
105 m <- i - 5 | 112 m <- i - 5 |
106 T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp | 113 T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp |
107 if (T[i] < 8.4) { | 114 if (T[i] < 8.4) { |
108 dh[i] <- 0 | 115 dh[i] <- 0 |
109 } | 116 } |
110 else { | 117 else { |
111 dh[i] <- T[i] - 8.4 | 118 dh[i] <- T[i] - 8.4 |
112 } | 119 } |
113 } | 120 } |
114 else if (i > settime) { | 121 else if (i > settime) { |
115 n <- i - settime | 122 n <- i - settime |
116 T[i] = dnp + (ts - dnp) * exp( - b * n / z) | 123 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) |
117 if (T[i] < 8.4) { | 124 if (T[i] < 8.4) { |
118 dh[i] <- 0 | 125 dh[i] <- 0 |
119 } | 126 } |
120 else { | 127 else { |
121 dh[i] <- T[i] - 8.4 | 128 dh[i] <- T[i] - 8.4 |
122 } | 129 } |
123 } | 130 } |
124 else { | 131 else { |
125 n <- i + 24 - settime | 132 n <- i + 24 - settime |
126 T[i]=dnp + (ts - dnp) * exp( - b * n / z) | 133 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) |
127 if (T[i] < 8.4) { | 134 if (T[i] < 8.4) { |
128 dh[i] <- 0 | 135 dh[i] <- 0 |
129 } | 136 } |
130 else { | 137 else { |
131 dh[i] <- T[i] - 8.4 | 138 dh[i] <- T[i] - 8.4 |
132 } | 139 } |
133 } | 140 } |
134 } | 141 } |
135 dd <- sum(dh) / 24 | 142 averages <- sum(dh) / 24 |
136 } | 143 } |
137 return(c(dmean, dd)) | 144 return(c(curr_mean_temp, averages)) |
138 } | 145 } |
139 | 146 |
140 dev.egg = function(temperature) { | 147 mortality.adult = function(temperature) { |
141 dev.rate= -0.9843 * temperature + 33.438 | 148 if (temperature < 12.7) { |
142 return(dev.rate) | 149 mortality.probability = 0.002 |
143 } | 150 } |
144 | 151 else { |
145 dev.young = function(temperature) { | 152 mortality.probability = temperature * 0.0005 + 0.02 |
146 n12 <- -0.3728 * temperature + 14.68 | 153 } |
147 n23 <- -0.6119 * temperature + 25.249 | 154 return(mortality.probability) |
148 dev.rate = mean(n12 + n23) | |
149 return(dev.rate) | |
150 } | |
151 | |
152 dev.old = function(temperature) { | |
153 n34 <- -0.6119 * temperature + 17.602 | |
154 n45 <- -0.4408 * temperature + 19.036 | |
155 dev.rate = mean(n34 + n45) | |
156 return(dev.rate) | |
157 } | |
158 | |
159 dev.emerg = function(temperature) { | |
160 emerg.rate <- -0.5332 * temperature + 24.147 | |
161 return(emerg.rate) | |
162 } | 155 } |
163 | 156 |
164 mortality.egg = function(temperature) { | 157 mortality.egg = function(temperature) { |
165 if (temperature < 12.7) { | 158 if (temperature < 12.7) { |
166 mort.prob = 0.8 | 159 mortality.probability = 0.8 |
167 } | 160 } |
168 else { | 161 else { |
169 mort.prob = 0.8 - temperature / 40.0 | 162 mortality.probability = 0.8 - temperature / 40.0 |
170 if (mort.prob < 0) { | 163 if (mortality.probability < 0) { |
171 mort.prob = 0.01 | 164 mortality.probability = 0.01 |
172 } | 165 } |
173 } | 166 } |
174 return(mort.prob) | 167 return(mortality.probability) |
175 } | 168 } |
176 | 169 |
177 mortality.nymph = function(temperature) { | 170 mortality.nymph = function(temperature) { |
178 if (temperature < 12.7) { | 171 if (temperature < 12.7) { |
179 mort.prob = 0.03 | 172 mortality.probability = 0.03 |
180 } | 173 } |
181 else { | 174 else { |
182 mort.prob = temperature * 0.0008 + 0.03 | 175 mortality.probability = temperature * 0.0008 + 0.03 |
183 } | 176 } |
184 return(mort.prob) | 177 return(mortality.probability) |
185 } | 178 } |
186 | 179 |
187 mortality.adult = function(temperature) { | 180 parse_input_data = function(input_file, num_rows) { |
188 if (temperature < 12.7) { | 181 # Read in the input temperature datafile into a data frame. |
189 mort.prob = 0.002 | 182 temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") |
190 } | 183 num_columns <- dim(temperature_data_frame)[2] |
191 else { | 184 if (num_columns == 6) { |
192 mort.prob = temperature * 0.0005 + 0.02 | 185 # The input data has the following 6 columns: |
193 } | 186 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX |
194 return(mort.prob) | 187 # Set the column names for access when adding daylight length.. |
188 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") | |
189 # Add a column containing the daylight length for each day. | |
190 temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) | |
191 # Reset the column names with the additional column for later access. | |
192 colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") | |
193 } | |
194 return(temperature_data_frame) | |
195 } | |
196 | |
197 render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error, | |
198 group1, group2, group3, group1_std_error, group2_std_error, group3_std_error) { | |
199 if (chart_type == "pop_size_by_life_stage") { | |
200 title <- paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
201 legend_text <- c("Egg", "Nymph", "Adult") | |
202 columns <- c(4, 2, 1) | |
203 } else if (chart_type == "pop_size_by_generation") { | |
204 title <- paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
205 legend_text <- c("P", "F1", "F2") | |
206 columns <- c(1, 2, 4) | |
207 } else if (chart_type == "adult_pop_size_by_generation") { | |
208 title <- paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
209 legend_text <- c("P", "F1", "F2") | |
210 columns <- c(1, 2, 4) | |
211 } | |
212 plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | |
213 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3) | |
214 lines(days, group2, lwd=2, lty=1, col=2) | |
215 lines(days, group3, lwd=2, lty=1, col=4) | |
216 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
217 axis(2, cex.axis=3) | |
218 if (plot_std_error==1) { | |
219 # Standard error for group1. | |
220 lines(days, group1+group1_std_error, lty=2) | |
221 lines (days, group1-group1_std_error, lty=2) | |
222 # Standard error for group2. | |
223 lines(days, group2+group2_std_error, col=2, lty=2) | |
224 lines(days, group2-group2_std_error, col=2, lty=2) | |
225 # Standard error for group3. | |
226 lines(days, group3+group3_std_error, col=4, lty=2) | |
227 lines(days, group3-group3_std_error, col=4, lty=2) | |
228 } | |
195 } | 229 } |
196 | 230 |
197 temperature_data_frame <- parse_input_data(opt$input, opt$num_days) | 231 temperature_data_frame <- parse_input_data(opt$input, opt$num_days) |
198 # All latitude values are the same, | 232 # All latitude values are the same, so get the value from the first row. |
199 # so get the value from the first row. | |
200 latitude <- temperature_data_frame$LATITUDE[1] | 233 latitude <- temperature_data_frame$LATITUDE[1] |
201 | 234 |
202 cat("Number of days: ", opt$num_days, "\n") | 235 # Initialize matrices. |
203 | 236 Eggs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
204 # Initialize matrix for results from all replications. | 237 YoungNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
205 S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications) | 238 OldNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
206 newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications) | 239 Previtellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
207 | 240 Vitellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
208 # Loop through replications. | 241 Diapausing.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
209 for (N.rep in 1:opt$replications) { | 242 |
210 # During each replication start with 1000 individuals. | 243 newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
211 # TODO: user definable as well? | 244 adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
212 n <- 1000 | 245 death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
213 # Generation, Stage, DD, T, Diapause. | 246 |
214 vec.ini <- c(0, 3, 0, 0, 0) | 247 P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
215 # Overwintering, previttelogenic, DD=0, T=0, no-diapause. | 248 P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
216 vec.mat <- rep(vec.ini, n) | 249 F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) |
250 F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | |
251 F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | |
252 F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | |
253 | |
254 population.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) | |
255 | |
256 # Process replications. | |
257 for (N.replications in 1:opt$replications) { | |
258 # Start with the user-defined number of insects per replication. | |
259 num_insects <- opt$insects_per_replication | |
260 # Generation, Stage, degree-days, T, Diapause. | |
261 vector.ini <- c(0, 3, 0, 0, 0) | |
262 # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause. | |
263 vector.matrix <- rep(vector.ini, num_insects) | |
217 # Complete matrix for the population. | 264 # Complete matrix for the population. |
218 vec.mat <- base::t(matrix(vec.mat, nrow=5)) | 265 vector.matrix <- base::t(matrix(vector.matrix, nrow=5)) |
219 # Time series of population size. | 266 # Time series of population size. |
220 tot.pop <- NULL | 267 Eggs <- rep(0, opt$num_days) |
221 gen0.pop <- rep(0, opt$num_days) | 268 YoungNymphs <- rep(0, opt$num_days) |
222 gen1.pop <- rep(0, opt$num_days) | 269 OldNymphs <- rep(0, opt$num_days) |
223 gen2.pop <- rep(0, opt$num_days) | 270 Previtellogenic <- rep(0, opt$num_days) |
224 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days) | 271 Vitellogenic <- rep(0, opt$num_days) |
225 g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days) | 272 Diapausing <- rep(0, opt$num_days) |
226 N.newborn <- N.death <- N.adult <- rep(0, opt$num_days) | 273 |
227 dd.day <- rep(0, opt$num_days) | 274 N.newborn <- rep(0, opt$num_days) |
275 N.adult <- rep(0, opt$num_days) | |
276 N.death <- rep(0, opt$num_days) | |
277 | |
278 overwintering_adult.population <- rep(0, opt$num_days) | |
279 first_generation.population <- rep(0, opt$num_days) | |
280 second_generation.population <- rep(0, opt$num_days) | |
281 | |
282 P.adult <- rep(0, opt$num_days) | |
283 F1.adult <- rep(0, opt$num_days) | |
284 F2.adult <- rep(0, opt$num_days) | |
285 | |
286 total.population <- NULL | |
287 | |
288 averages.day <- rep(0, opt$num_days) | |
228 # All the days included in the input temperature dataset. | 289 # All the days included in the input temperature dataset. |
229 for (row in 1:opt$num_days) { | 290 for (row in 1:opt$num_days) { |
230 # Get the integer day of the year for the current row. | 291 # Get the integer day of the year for the current row. |
231 doy <- temperature_data_frame$DOY[row] | 292 doy <- temperature_data_frame$DOY[row] |
232 # Photoperiod in the day. | 293 # Photoperiod in the day. |
233 photoperiod <- temperature_data_frame$DAYLEN[row] | 294 photoperiod <- temperature_data_frame$DAYLEN[row] |
234 temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days) | 295 temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days) |
235 mean.temp <- temp.profile[1] | 296 mean.temp <- temp.profile[1] |
236 dd.temp <- temp.profile[2] | 297 averages.temp <- temp.profile[2] |
237 dd.day[row] <- dd.temp | 298 averages.day[row] <- averages.temp |
238 # Trash bin for death. | 299 # Trash bin for death. |
239 death.vec <- NULL | 300 death.vector <- NULL |
240 # Newborn. | 301 # Newborn. |
241 birth.vec <- NULL | 302 birth.vector <- NULL |
242 # All individuals. | 303 # All individuals. |
243 for (i in 1:n) { | 304 for (i in 1:num_insects) { |
244 # Find individual record. | 305 # Individual record. |
245 vec.ind <- vec.mat[i,] | 306 vector.individual <- vector.matrix[i,] |
246 # First of all, still alive? | 307 # Adjustment for late season mortality rate (still alive?). |
247 # Adjustment for late season mortality rate. | |
248 if (latitude < 40.0) { | 308 if (latitude < 40.0) { |
249 post.mort <- 1 | 309 post.mortality <- 1 |
250 day.kill <- 300 | 310 day.kill <- 300 |
251 } | 311 } |
252 else { | 312 else { |
253 post.mort <- 2 | 313 post.mortality <- 2 |
254 day.kill <- 250 | 314 day.kill <- 250 |
255 } | 315 } |
256 if (vec.ind[2] == 0) { | 316 if (vector.individual[2] == 0) { |
257 # Egg. | 317 # Egg. |
258 death.prob = opt$egg_mort * mortality.egg(mean.temp) | 318 death.probability = opt$egg_mortality * mortality.egg(mean.temp) |
259 } | 319 } |
260 else if (vec.ind[2] == 1 | vec.ind[2] == 2) { | 320 else if (vector.individual[2] == 1 | vector.individual[2] == 2) { |
261 death.prob = opt$nymph_mort * mortality.nymph(mean.temp) | 321 death.probability = opt$nymph_mortality * mortality.nymph(mean.temp) |
262 } | 322 } |
263 else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) { | 323 else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { |
264 # For adult. | 324 # Adult. |
265 if (doy < day.kill) { | 325 if (doy < day.kill) { |
266 death.prob = opt$adult_mort * mortality.adult(mean.temp) | 326 death.probability = opt$adult_mortality * mortality.adult(mean.temp) |
267 } | 327 } |
268 else { | 328 else { |
269 # Increase adult mortality after fall equinox. | 329 # Increase adult mortality after fall equinox. |
270 death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp) | 330 death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp) |
271 } | 331 } |
272 } | 332 } |
273 # (or dependent on temperature and life stage?) | 333 # Dependent on temperature and life stage? |
274 u.d <- runif(1) | 334 u.d <- runif(1) |
275 if (u.d < death.prob) { | 335 if (u.d < death.probability) { |
276 death.vec <- c(death.vec, i) | 336 death.vector <- c(death.vector, i) |
277 } | 337 } |
278 else { | 338 else { |
279 # Aggregrate index of dead bug. | 339 # End of diapause. |
280 # Event 1 end of diapause. | 340 if (vector.individual[1] == 0 && vector.individual[2] == 3) { |
281 if (vec.ind[1] == 0 && vec.ind[2] == 3) { | |
282 # Overwintering adult (previttelogenic). | 341 # Overwintering adult (previttelogenic). |
283 if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && doy < 180) { | 342 if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { |
284 # Add 68C to become fully reproductively matured. | 343 # Add 68C to become fully reproductively matured. |
285 # Transfer to vittelogenic. | 344 # Transfer to vittelogenic. |
286 vec.ind <- c(0, 4, 0, 0, 0) | 345 vector.individual <- c(0, 4, 0, 0, 0) |
287 vec.mat[i,] <- vec.ind | 346 vector.matrix[i,] <- vector.individual |
288 } | 347 } |
289 else { | 348 else { |
290 # Add to dd. | 349 # Add to # Add average temperature for current day. |
291 vec.ind[3] <- vec.ind[3] + dd.temp | 350 vector.individual[3] <- vector.individual[3] + averages.temp |
292 # Add 1 day in current stage. | 351 # Add 1 day in current stage. |
293 vec.ind[4] <- vec.ind[4] + 1 | 352 vector.individual[4] <- vector.individual[4] + 1 |
294 vec.mat[i,] <- vec.ind | 353 vector.matrix[i,] <- vector.individual |
295 } | 354 } |
296 } | 355 } |
297 if (vec.ind[1] != 0 && vec.ind[2] == 3) { | 356 if (vector.individual[1] != 0 && vector.individual[2] == 3) { |
298 # Not overwintering adult (previttelogenic). | 357 # Not overwintering adult (previttelogenic). |
299 current.gen <- vec.ind[1] | 358 current.gen <- vector.individual[1] |
300 if (vec.ind[3] > 68) { | 359 if (vector.individual[3] > 68) { |
301 # Add 68C to become fully reproductively matured. | 360 # Add 68C to become fully reproductively matured. |
302 # Transfer to vittelogenic. | 361 # Transfer to vittelogenic. |
303 vec.ind <- c(current.gen, 4, 0, 0, 0) | 362 vector.individual <- c(current.gen, 4, 0, 0, 0) |
304 vec.mat[i,] <- vec.ind | 363 vector.matrix[i,] <- vector.individual |
305 } | 364 } |
306 else { | 365 else { |
307 # Add to dd. | 366 # Add average temperature for current day. |
308 vec.ind[3] <- vec.ind[3] + dd.temp | 367 vector.individual[3] <- vector.individual[3] + averages.temp |
309 # Add 1 day in current stage. | 368 # Add 1 day in current stage. |
310 vec.ind[4] <- vec.ind[4] + 1 | 369 vector.individual[4] <- vector.individual[4] + 1 |
311 vec.mat[i,] <- vec.ind | 370 vector.matrix[i,] <- vector.individual |
312 } | 371 } |
313 } | 372 } |
314 # Event 2 oviposition -- where population dynamics comes from. | 373 # Oviposition -- where population dynamics comes from. |
315 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) { | 374 if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) { |
316 # Vittelogenic stage, overwintering generation. | 375 # Vittelogenic stage, overwintering generation. |
317 if (vec.ind[4] == 0) { | 376 if (vector.individual[4] == 0) { |
318 # Just turned in vittelogenic stage. | 377 # Just turned in vittelogenic stage. |
319 n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) | 378 num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) |
320 } | 379 } |
321 else { | 380 else { |
322 # Daily probability of birth. | 381 # Daily probability of birth. |
323 p.birth = opt$oviposition * 0.01 | 382 p.birth = opt$oviposition * 0.01 |
324 u1 <- runif(1) | 383 u1 <- runif(1) |
325 if (u1 < p.birth) { | 384 if (u1 < p.birth) { |
326 n.birth=round(runif(1, 2, 8)) | 385 num_insects.birth = round(runif(1, 2, 8)) |
327 } | 386 } |
328 } | 387 } |
329 # Add to dd. | 388 # Add average temperature for current day. |
330 vec.ind[3] <- vec.ind[3] + dd.temp | 389 vector.individual[3] <- vector.individual[3] + averages.temp |
331 # Add 1 day in current stage. | 390 # Add 1 day in current stage. |
332 vec.ind[4] <- vec.ind[4] + 1 | 391 vector.individual[4] <- vector.individual[4] + 1 |
333 vec.mat[i,] <- vec.ind | 392 vector.matrix[i,] <- vector.individual |
334 if (n.birth > 0) { | 393 if (num_insects.birth > 0) { |
335 # Add new birth -- might be in different generations. | 394 # Add new birth -- might be in different generations. |
336 new.gen <- vec.ind[1] + 1 | 395 new.gen <- vector.individual[1] + 1 |
337 # Egg profile. | 396 # Egg profile. |
338 new.ind <- c(new.gen, 0, 0, 0, 0) | 397 new.individual <- c(new.gen, 0, 0, 0, 0) |
339 new.vec <- rep(new.ind, n.birth) | 398 new.vector <- rep(new.individual, num_insects.birth) |
340 # Update batch of egg profile. | 399 # Update batch of egg profile. |
341 new.vec <- t(matrix(new.vec, nrow=5)) | 400 new.vector <- t(matrix(new.vector, nrow=5)) |
342 # Group with total eggs laid in that day. | 401 # Group with total eggs laid in that day. |
343 birth.vec <- rbind(birth.vec, new.vec) | 402 birth.vector <- rbind(birth.vector, new.vector) |
344 } | 403 } |
345 } | 404 } |
346 # Event 2 oviposition -- for generation 1. | 405 # Oviposition -- for generation 1. |
347 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && doy < 222) { | 406 if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) { |
348 # Vittelogenic stage, 1st generation | 407 # Vittelogenic stage, 1st generation |
349 if (vec.ind[4] == 0) { | 408 if (vector.individual[4] == 0) { |
350 # Just turned in vittelogenic stage. | 409 # Just turned in vittelogenic stage. |
351 n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) | 410 num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size)) |
352 } | 411 } |
353 else { | 412 else { |
354 # Daily probability of birth. | 413 # Daily probability of birth. |
355 p.birth = opt$oviposition * 0.01 | 414 p.birth = opt$oviposition * 0.01 |
356 u1 <- runif(1) | 415 u1 <- runif(1) |
357 if (u1 < p.birth) { | 416 if (u1 < p.birth) { |
358 n.birth = round(runif(1, 2, 8)) | 417 num_insects.birth = round(runif(1, 2, 8)) |
359 } | 418 } |
360 } | 419 } |
361 # Add to dd. | 420 # Add average temperature for current day. |
362 vec.ind[3] <- vec.ind[3] + dd.temp | 421 vector.individual[3] <- vector.individual[3] + averages.temp |
363 # Add 1 day in current stage. | 422 # Add 1 day in current stage. |
364 vec.ind[4] <- vec.ind[4] + 1 | 423 vector.individual[4] <- vector.individual[4] + 1 |
365 vec.mat[i,] <- vec.ind | 424 vector.matrix[i,] <- vector.individual |
366 if (n.birth > 0) { | 425 if (num_insects.birth > 0) { |
367 # Add new birth -- might be in different generations. | 426 # Add new birth -- might be in different generations. |
368 new.gen <- vec.ind[1] + 1 | 427 new.gen <- vector.individual[1] + 1 |
369 # Egg profile. | 428 # Egg profile. |
370 new.ind <- c(new.gen, 0, 0, 0, 0) | 429 new.individual <- c(new.gen, 0, 0, 0, 0) |
371 new.vec <- rep(new.ind, n.birth) | 430 new.vector <- rep(new.individual, num_insects.birth) |
372 # Update batch of egg profile. | 431 # Update batch of egg profile. |
373 new.vec <- t(matrix(new.vec, nrow=5)) | 432 new.vector <- t(matrix(new.vector, nrow=5)) |
374 # Group with total eggs laid in that day. | 433 # Group with total eggs laid in that day. |
375 birth.vec <- rbind(birth.vec, new.vec) | 434 birth.vector <- rbind(birth.vector, new.vector) |
376 } | 435 } |
377 } | 436 } |
378 # Event 3 development (with diapause determination). | 437 # Egg to young nymph. |
379 # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg). | 438 if (vector.individual[2] == 0) { |
380 if (vec.ind[2] == 0) { | 439 # Add average temperature for current day. |
381 # Egg stage. | 440 vector.individual[3] <- vector.individual[3] + averages.temp |
382 # Add to dd. | 441 if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) { |
383 vec.ind[3] <- vec.ind[3] + dd.temp | 442 # From egg to young nymph, degree-days requirement met. |
384 if (vec.ind[3] >= (68 + opt$young_nymph_accum)) { | 443 current.gen <- vector.individual[1] |
385 # From egg to young nymph, DD requirement met. | |
386 current.gen <- vec.ind[1] | |
387 # Transfer to young nymph stage. | 444 # Transfer to young nymph stage. |
388 vec.ind <- c(current.gen, 1, 0, 0, 0) | 445 vector.individual <- c(current.gen, 1, 0, 0, 0) |
389 } | 446 } |
390 else { | 447 else { |
391 # Add 1 day in current stage. | 448 # Add 1 day in current stage. |
392 vec.ind[4] <- vec.ind[4] + 1 | 449 vector.individual[4] <- vector.individual[4] + 1 |
393 } | 450 } |
394 vec.mat[i,] <- vec.ind | 451 vector.matrix[i,] <- vector.individual |
395 } | 452 } |
396 # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause). | 453 # Young nymph to old nymph. |
397 if (vec.ind[2] == 1) { | 454 if (vector.individual[2] == 1) { |
398 # young nymph stage. | 455 # Add average temperature for current day. |
399 # add to dd. | 456 vector.individual[3] <- vector.individual[3] + averages.temp |
400 vec.ind[3] <- vec.ind[3] + dd.temp | 457 if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) { |
401 if (vec.ind[3] >= (250 + opt$old_nymph_accum)) { | 458 # From young to old nymph, degree_days requirement met. |
402 # From young to old nymph, dd requirement met. | 459 current.gen <- vector.individual[1] |
403 current.gen <- vec.ind[1] | |
404 # Transfer to old nym stage. | 460 # Transfer to old nym stage. |
405 vec.ind <- c(current.gen, 2, 0, 0, 0) | 461 vector.individual <- c(current.gen, 2, 0, 0, 0) |
406 if (photoperiod < opt$photoperiod && doy > 180) { | 462 if (photoperiod < opt$photoperiod && doy > 180) { |
407 vec.ind[5] <- 1 | 463 vector.individual[5] <- 1 |
408 } # Prepare for diapausing. | 464 } # Prepare for diapausing. |
409 } | 465 } |
410 else { | 466 else { |
411 # Add 1 day in current stage. | 467 # Add 1 day in current stage. |
412 vec.ind[4] <- vec.ind[4] + 1 | 468 vector.individual[4] <- vector.individual[4] + 1 |
413 } | 469 } |
414 vec.mat[i,] <- vec.ind | 470 vector.matrix[i,] <- vector.individual |
415 } | 471 } |
416 # Event 3.3 old nymph to adult: previttelogenic or diapausing? | 472 # Old nymph to adult: previttelogenic or diapausing? |
417 if (vec.ind[2] == 2) { | 473 if (vector.individual[2] == 2) { |
418 # Old nymph stage. | 474 # Add average temperature for current day. |
419 # add to dd. | 475 vector.individual[3] <- vector.individual[3] + averages.temp |
420 vec.ind[3] <- vec.ind[3] + dd.temp | 476 if (vector.individual[3] >= (200+opt$adult_accumulation)) { |
421 if (vec.ind[3] >= (200 + opt$adult_accum)) { | 477 # From old to adult, degree_days requirement met. |
422 # From old to adult, dd requirement met. | 478 current.gen <- vector.individual[1] |
423 current.gen <- vec.ind[1] | 479 if (vector.individual[5] == 0) { |
424 if (vec.ind[5] == 0) { | 480 # Previttelogenic. |
425 # Non-diapausing adult -- previttelogenic. | 481 vector.individual <- c(current.gen, 3, 0, 0, 0) |
426 vec.ind <- c(current.gen, 3, 0, 0, 0) | |
427 } | 482 } |
428 else { | 483 else { |
429 # Diapausing. | 484 # Diapausing. |
430 vec.ind <- c(current.gen, 5, 0, 0, 1) | 485 vector.individual <- c(current.gen, 5, 0, 0, 1) |
431 } | 486 } |
432 } | 487 } |
433 else { | 488 else { |
434 # Add 1 day in current stage. | 489 # Add 1 day in current stage. |
435 vec.ind[4] <- vec.ind[4] + 1 | 490 vector.individual[4] <- vector.individual[4] + 1 |
436 } | 491 } |
437 vec.mat[i,] <- vec.ind | 492 vector.matrix[i,] <- vector.individual |
438 } | 493 } |
439 # Event 4 growing of diapausing adult (unimportant, but still necessary). | 494 # Growing of diapausing adult (unimportant, but still necessary). |
440 if (vec.ind[2] == 5) { | 495 if (vector.individual[2] == 5) { |
441 vec.ind[3] <- vec.ind[3] + dd.temp | 496 vector.individual[3] <- vector.individual[3] + averages.temp |
442 vec.ind[4] <- vec.ind[4] + 1 | 497 vector.individual[4] <- vector.individual[4] + 1 |
443 vec.mat[i,] <- vec.ind | 498 vector.matrix[i,] <- vector.individual |
444 } | 499 } |
445 } # Else if it is still alive. | 500 } # Else if it is still alive. |
446 } # End of the individual bug loop. | 501 } # End of the individual bug loop. |
447 # Find how many died. | 502 |
448 n.death <- length(death.vec) | 503 # Number of deaths. |
449 if (n.death > 0) { | 504 num_insects.death <- length(death.vector) |
450 vec.mat <- vec.mat[-death.vec, ] | 505 if (num_insects.death > 0) { |
506 # Remove record of dead. | |
507 vector.matrix <- vector.matrix[-death.vector, ] | |
451 } | 508 } |
452 # Remove record of dead. | 509 # Number of births. |
453 # Find how many new born. | 510 num_insects.newborn <- length(birth.vector[,1]) |
454 n.newborn <- length(birth.vec[,1]) | 511 vector.matrix <- rbind(vector.matrix, birth.vector) |
455 vec.mat <- rbind(vec.mat, birth.vec) | |
456 # Update population size for the next day. | 512 # Update population size for the next day. |
457 n <- n - n.death + n.newborn | 513 num_insects <- num_insects - num_insects.death + num_insects.newborn |
458 | 514 |
459 # Aggregate results by day. | 515 # Aggregate results by day. |
460 tot.pop <- c(tot.pop, n) | 516 # Egg population size. |
461 # Egg. | 517 Eggs[row] <- sum(vector.matrix[,2]==0) |
462 s0 <- sum(vec.mat[,2] == 0) | 518 # Young nymph population size. |
463 # Young nymph. | 519 YoungNymphs[row] <- sum(vector.matrix[,2]==1) |
464 s1 <- sum(vec.mat[,2] == 1) | 520 # Old nymph population size. |
465 # Old nymph. | 521 OldNymphs[row] <- sum(vector.matrix[,2]==2) |
466 s2 <- sum(vec.mat[,2] == 2) | 522 # Previtellogenic population size. |
467 # Previtellogenic. | 523 Previtellogenic[row] <- sum(vector.matrix[,2]==3) |
468 s3 <- sum(vec.mat[,2] == 3) | 524 # Vitellogenic population size. |
469 # Vitellogenic. | 525 Vitellogenic[row] <- sum(vector.matrix[,2]==4) |
470 s4 <- sum(vec.mat[,2] == 4) | 526 # Diapausing population size. |
471 # Diapausing. | 527 Diapausing[row] <- sum(vector.matrix[,2]==5) |
472 s5 <- sum(vec.mat[,2] == 5) | 528 |
473 # Overwintering adult. | 529 # Newborn population size. |
474 gen0 <- sum(vec.mat[,1] == 0) | 530 N.newborn[row] <- num_insects.newborn |
475 # First generation. | 531 # Adult population size. |
476 gen1 <- sum(vec.mat[,1] == 1) | 532 N.adult[row] <- sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5) |
477 # Second generation. | 533 # Dead population size. |
478 gen2 <- sum(vec.mat[,1] == 2) | 534 N.death[row] <- num_insects.death |
479 # Sum of all adults. | 535 |
480 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5) | 536 total.population <- c(total.population, num_insects) |
481 | 537 |
482 # Generation 0 pop size. | 538 # Overwintering adult population size. |
483 gen0.pop[row] <- gen0 | 539 overwintering_adult.population[row] <- sum(vector.matrix[,1]==0) |
484 gen1.pop[row] <- gen1 | 540 # First generation population size. |
485 gen2.pop[row] <- gen2 | 541 first_generation.population[row] <- sum(vector.matrix[,1]==1) |
486 | 542 # Second generation population size. |
487 S0[row] <- s0 | 543 second_generation.population[row] <- sum(vector.matrix[,1]==2) |
488 S1[row] <- s1 | 544 |
489 S2[row] <- s2 | 545 # P adult population size. |
490 S3[row] <- s3 | 546 P.adult[row] <- sum(vector.matrix[,1]==0) |
491 S4[row] <- s4 | 547 # F1 adult population size. |
492 S5[row] <- s5 | 548 F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)) |
493 | 549 # F2 adult population size |
494 g0.adult[row] <- sum(vec.mat[,1] == 0) | 550 F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)) |
495 g1.adult[row] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5)) | 551 } # End of days specified in the input temperature data. |
496 g2.adult[row] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5)) | 552 |
497 | 553 averages.cum <- cumsum(averages.day) |
498 N.newborn[row] <- n.newborn | 554 |
499 N.death[row] <- n.death | 555 # Define the output values. |
500 N.adult[row] <- n.adult | 556 Eggs.replications[,N.replications] <- Eggs |
501 } # end of days specified in the input temperature data | 557 YoungNymphs.replications[,N.replications] <- YoungNymphs |
502 | 558 OldNymphs.replications[,N.replications] <- OldNymphs |
503 dd.cum <- cumsum(dd.day) | 559 Previtellogenic.replications[,N.replications] <- Previtellogenic |
504 | 560 Vitellogenic.replications[,N.replications] <- Vitellogenic |
505 # Collect all the outputs. | 561 Diapausing.replications[,N.replications] <- Diapausing |
506 S0.rep[,N.rep] <- S0 | 562 |
507 S1.rep[,N.rep] <- S1 | 563 newborn.replications[,N.replications] <- N.newborn |
508 S2.rep[,N.rep] <- S2 | 564 adult.replications[,N.replications] <- N.adult |
509 S3.rep[,N.rep] <- S3 | 565 death.replications[,N.replications] <- N.death |
510 S4.rep[,N.rep] <- S4 | 566 |
511 S5.rep[,N.rep] <- S5 | 567 P.replications[,N.replications] <- overwintering_adult.population |
512 newborn.rep[,N.rep] <- N.newborn | 568 P_adults.replications[,N.replications] <- P.adult |
513 death.rep[,N.rep] <- N.death | 569 F1.replications[,N.replications] <- first_generation.population |
514 adult.rep[,N.rep] <- N.adult | 570 F1_adults.replications[,N.replications] <- F1.adult |
515 pop.rep[,N.rep] <- tot.pop | 571 F2.replications[,N.replications] <- second_generation.population |
516 g0.rep[,N.rep] <- gen0.pop | 572 F2_adults.replications[,N.replications] <- F2.adult |
517 g1.rep[,N.rep] <- gen1.pop | 573 |
518 g2.rep[,N.rep] <- gen2.pop | 574 population.replications[,N.replications] <- total.population |
519 g0a.rep[,N.rep] <- g0.adult | 575 } |
520 g1a.rep[,N.rep] <- g1.adult | 576 |
521 g2a.rep[,N.rep] <- g2.adult | 577 # Mean value for eggs. |
522 } | 578 eggs <- apply(Eggs.replications, 1, mean) |
523 | 579 # Standard error for eggs. |
524 # Data analysis and visualization can currently | 580 eggs.std_error <- apply(Eggs.replications, 1, sd) / sqrt(opt$replications) |
525 # plot only within a single calendar year. | 581 |
526 # TODO: enhance this to accomodate multiple calendar years. | 582 # Mean value for nymphs. |
583 nymphs <- apply((YoungNymphs.replications+OldNymphs.replications), 1, mean) | |
584 # Standard error for nymphs. | |
585 nymphs.std_error <- apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd) | |
586 | |
587 # Mean value for adults. | |
588 adults <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean) | |
589 # Standard error for adults. | |
590 adults.std_error <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications) | |
591 | |
592 # Mean value for P. | |
593 P <- apply(P.replications, 1, mean) | |
594 # Standard error for P. | |
595 P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications) | |
596 | |
597 # Mean value for P adults. | |
598 P_adults <- apply(P_adults.replications, 1, mean) | |
599 # Standard error for P_adult. | |
600 P_adults.std_error <- apply(P_adults.replications, 1, sd) / sqrt(opt$replications) | |
601 | |
602 # Mean value for F1. | |
603 F1 <- apply(F1.replications, 1, mean) | |
604 # Standard error for F1. | |
605 F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications) | |
606 | |
607 # Mean value for F1 adults. | |
608 F1_adults <- apply(F1_adults.replications, 1, mean) | |
609 # Standard error for F1 adult. | |
610 F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications) | |
611 | |
612 # Mean value for F2. | |
613 F2 <- apply(F2.replications, 1, mean) | |
614 # Standard error for F2. | |
615 F2.std_error <- apply(F2.replications, 1, sd) / sqrt(opt$replications) | |
616 | |
617 # Mean value for F2 adults. | |
618 F2_adults <- apply(F2_adults.replications, 1, mean) | |
619 # Standard error for F2 adult. | |
620 F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications) | |
621 | |
622 # Display the total number of days in the Galaxy history item blurb. | |
623 cat("Number of days: ", opt$num_days, "\n") | |
624 | |
625 dev.new(width=20, height=30) | |
626 | |
627 # Start PDF device driver to save charts to output. | |
628 pdf(file=opt$output, width=20, height=30, bg="white") | |
629 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)) | |
630 | |
631 # Data analysis and visualization plots only within a single calendar year. | |
632 days <- c(1:opt$num_days) | |
527 start_date <- temperature_data_frame$DATE[1] | 633 start_date <- temperature_data_frame$DATE[1] |
528 end_date <- temperature_data_frame$DATE[opt$num_days] | 634 end_date <- temperature_data_frame$DATE[opt$num_days] |
529 | 635 |
530 n.yr <- 1 | 636 # Subfigure 1: population size by life stage. |
531 day.all <- c(1:opt$num_days * n.yr) | 637 maxval <- max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error) |
532 | 638 render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, |
533 # mean value for adults | 639 opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error) |
534 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean) | 640 # Subfigure 2: population size by generation. |
535 # mean value for nymphs | 641 maxval <- max(F2) |
536 sn <- apply((S1.rep + S2.rep), 1,mean) | 642 render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, |
537 # mean value for eggs | 643 opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error) |
538 se <- apply(S0.rep, 1, mean) | 644 # Subfigure 3: adult population size by generation. |
539 # mean value for P | 645 maxval <- max(F2_adults) + 100 |
540 g0 <- apply(g0.rep, 1, mean) | 646 render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, |
541 # mean value for F1 | 647 opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error) |
542 g1 <- apply(g1.rep, 1, mean) | |
543 # mean value for F2 | |
544 g2 <- apply(g2.rep, 1, mean) | |
545 # mean value for P adult | |
546 g0a <- apply(g0a.rep, 1, mean) | |
547 # mean value for F1 adult | |
548 g1a <- apply(g1a.rep, 1, mean) | |
549 # mean value for F2 adult | |
550 g2a <- apply(g2a.rep, 1, mean) | |
551 | |
552 # SE for adults | |
553 sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications) | |
554 # SE for nymphs | |
555 sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd) | |
556 # SE for eggs | |
557 se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications) | |
558 # SE value for P | |
559 g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications) | |
560 # SE for F1 | |
561 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications) | |
562 # SE for F2 | |
563 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications) | |
564 # SE for P adult | |
565 g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications) | |
566 # SE for F1 adult | |
567 g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications) | |
568 # SE for F2 adult | |
569 g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications) | |
570 | |
571 dev.new(width=20, height=30) | |
572 | |
573 # Start PDF device driver to save charts to output. | |
574 pdf(file=opt$output, width=20, height=30, bg="white") | |
575 | |
576 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1)) | |
577 | |
578 # Subfigure 1: population size by life stage | |
579 title <- paste(opt$insect, ": Total pop. by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
580 plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | |
581 # Young and old nymphs. | |
582 lines(day.all, sn, lwd=2, lty=1, col=2) | |
583 # Eggs | |
584 lines(day.all, se, lwd=2, lty=1, col=4) | |
585 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
586 axis(2, cex.axis=3) | |
587 leg.text <- c("Egg", "Nymph", "Adult") | |
588 legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=3) | |
589 if (opt$se_plot == 1) { | |
590 # Add SE lines to plot | |
591 # SE for adults | |
592 lines (day.all, sa + sa.se, lty=2) | |
593 lines (day.all, sa - sa.se, lty=2) | |
594 # SE for nymphs | |
595 lines (day.all, sn + sn.se, col=2, lty=2) | |
596 lines (day.all, sn - sn.se, col=2, lty=2) | |
597 # SE for eggs | |
598 lines (day.all, se + se.se, col=4, lty=2) | |
599 lines (day.all, se - se.se, col=4, lty=2) | |
600 } | |
601 | |
602 # Subfigure 2: population size by generation | |
603 title <- paste(opt$insect, ": Total pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
604 plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | |
605 lines(day.all, g1, lwd = 2, lty = 1, col=2) | |
606 lines(day.all, g2, lwd = 2, lty = 1, col=4) | |
607 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
608 axis(2, cex.axis=3) | |
609 leg.text <- c("P", "F1", "F2") | |
610 legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
611 if (opt$se_plot == 1) { | |
612 # Add SE lines to plot | |
613 # SE for adults | |
614 lines (day.all, g0+g0.se, lty=2) | |
615 lines (day.all, g0-g0.se, lty=2) | |
616 # SE for nymphs | |
617 lines (day.all, g1+g1.se, col=2, lty=2) | |
618 lines (day.all, g1-g1.se, col=2, lty=2) | |
619 # SE for eggs | |
620 lines (day.all, g2+g2.se, col=4, lty=2) | |
621 lines (day.all, g2-g2.se, col=4, lty=2) | |
622 } | |
623 | |
624 # Subfigure 3: adult population size by generation | |
625 title <- paste(opt$insect, ": Adult pop. by generation :", opt$location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") | |
626 plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) | |
627 lines(day.all, g1a, lwd = 2, lty = 1, col=2) | |
628 lines(day.all, g2a, lwd = 2, lty = 1, col=4) | |
629 axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
630 axis(2, cex.axis=3) | |
631 leg.text <- c("P", "F1", "F2") | |
632 legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) | |
633 if (opt$se_plot == 1) { | |
634 # Add SE lines to plot | |
635 # SE for adults | |
636 lines (day.all, g0a+g0a.se, lty=2) | |
637 lines (day.all, g0a-g0a.se, lty=2) | |
638 # SE for nymphs | |
639 lines (day.all, g1a+g1a.se, col=2, lty=2) | |
640 lines (day.all, g1a-g1a.se, col=2, lty=2) | |
641 # SE for eggs | |
642 lines (day.all, g2a+g2a.se, col=4, lty=2) | |
643 lines (day.all, g2a-g2a.se, col=4, lty=2) | |
644 } | |
645 | 648 |
646 # Turn off device driver to flush output. | 649 # Turn off device driver to flush output. |
647 dev.off() | 650 dev.off() |