diff insect_phenology_model.R @ 8:37f1ad91a949 draft

Uploaded
author greg
date Tue, 13 Feb 2018 13:53:37 -0500
parents fe3f86012394
children 61bc6bd8807d
line wrap: on
line diff
--- a/insect_phenology_model.R	Tue Feb 13 13:53:29 2018 -0500
+++ b/insect_phenology_model.R	Tue Feb 13 13:53:37 2018 -0500
@@ -23,145 +23,165 @@
     make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)")
 )
 
-parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
-args <- parse_args(parser, positional_arguments=TRUE)
-opt <- args$options
+parser <- OptionParser(usage="%prog [options] file", option_list=option_list);
+args <- parse_args(parser, positional_arguments=TRUE);
+opt <- args$options;
 
 add_daylight_length = function(temperature_data_frame, num_columns, num_rows) {
     # Return a vector of daylight length (photoperido profile) for
     # the number of days specified in the input temperature data
     # (from Forsythe 1995).
-    p = 0.8333
-    latitude <- temperature_data_frame$LATITUDE[1]
-    daylight_length_vector <- NULL
+    p = 0.8333;
+    latitude = temperature_data_frame$LATITUDE[1];
+    daylight_length_vector = NULL;
     for (i in 1:num_rows) {
         # Get the day of the year from the current row
         # of the temperature data for computation.
-        doy <- temperature_data_frame$DOY[i]
-        theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)))
-        phi <- asin(0.39795 * cos(theta))
+        doy = temperature_data_frame$DOY[i];
+        theta = 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)));
+        phi = asin(0.39795 * cos(theta));
         # Compute the length of daylight for the day of the year.
-        darkness_length <- 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))
-        daylight_length_vector[i] <- 24 - darkness_length
+        darkness_length = 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)));
+        daylight_length_vector[i] = 24 - darkness_length;
     }
     # Append daylight_length_vector as a new column to temperature_data_frame.
-    temperature_data_frame[, num_columns+1] <- daylight_length_vector
-    return(temperature_data_frame)
+    temperature_data_frame[, num_columns+1] = daylight_length_vector;
+    return(temperature_data_frame);
 }
 
 dev.egg = function(temperature) {
-    dev.rate = -0.9843 * temperature + 33.438
-    return(dev.rate)
+    dev.rate = -0.9843 * temperature + 33.438;
+    return(dev.rate);
 }
 
 dev.emerg = function(temperature) {
-    emerg.rate <- -0.5332 * temperature + 24.147
-    return(emerg.rate)
+    emerg.rate = -0.5332 * temperature + 24.147;
+    return(emerg.rate);
 }
 
 dev.old = function(temperature) {
-    n34 <- -0.6119 * temperature + 17.602
-    n45 <- -0.4408 * temperature + 19.036
-    dev.rate = mean(n34 + n45)
-    return(dev.rate)
+    n34 = -0.6119 * temperature + 17.602;
+    n45 = -0.4408 * temperature + 19.036;
+    dev.rate = mean(n34 + n45);
+    return(dev.rate);
 }
 
 dev.young = function(temperature) {
-    n12 <- -0.3728 * temperature + 14.68
-    n23 <- -0.6119 * temperature + 25.249
-    dev.rate = mean(n12 + n23)
-    return(dev.rate)
+    n12 = -0.3728 * temperature + 14.68;
+    n23 = -0.6119 * temperature + 25.249;
+    dev.rate = mean(n12 + n23);
+    return(dev.rate);
+}
+
+
+get_date_labels = function(temperature_data_frame, num_rows) {
+    # Keep track of the years to see if spanning years.
+    month_labels = list();
+    current_month_label = NULL;
+    for (i in 1:num_rows) {
+        # Get the year and month from the date which
+        # has the format YYYY-MM-DD.
+        date = format(temperature_data_frame$DATE[i]);
+        items = strsplit(date, "-")[[1]];
+        month = items[2];
+        month_label = month.abb[as.integer(month)];
+        if (!identical(current_month_label, month_label)) {
+            month_labels[length(month_labels)+1] = month_label;
+            current_month_label = month_label;
+        }
+    }
+    return(c(unlist(month_labels)));
 }
 
 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) {
-    # Base development threshold for Brown Marmolated Stink Bug
+    # Base development threshold for Brown Marmorated Stink Bug
     # insect phenology model.
-    threshold <- 14.17
+    threshold = 14.17;
     # Minimum temperature for current row.
-    curr_min_temp <- temperature_data_frame$TMIN[row]
+    curr_min_temp = temperature_data_frame$TMIN[row];
     # Maximum temperature for current row.
-    curr_max_temp <- temperature_data_frame$TMAX[row]
+    curr_max_temp = temperature_data_frame$TMAX[row];
     # Mean temperature for current row.
-    curr_mean_temp <- 0.5 * (curr_min_temp + curr_max_temp)
+    curr_mean_temp = 0.5 * (curr_min_temp + curr_max_temp);
     # Initialize degree day accumulation
-    averages <- 0
+    averages = 0;
     if (curr_max_temp < threshold) {
-        averages <- 0
+        averages = 0;
     }
     else {
         # Initialize hourly temperature.
-        T <- NULL
+        T = NULL;
         # Initialize degree hour vector.
-        dh <- NULL
+        dh = NULL;
         # Daylight length for current row.
-        y <- temperature_data_frame$DAYLEN[row]
+        y = temperature_data_frame$DAYLEN[row];
         # Darkness length.
-        z <- 24 - y
+        z = 24 - y;
         # Lag coefficient.
-        a <- 1.86
+        a = 1.86;
         # Darkness coefficient.
-        b <- 2.20
+        b = 2.20;
         # Sunrise time.
-        risetime <- 12 - y / 2
+        risetime = 12 - y / 2;
         # Sunset time.
-        settime <- 12 + y / 2
-        ts <- (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp
+        settime = 12 + y / 2;
+        ts = (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp;
         for (i in 1:24) {
             if (i > risetime && i < settime) {
                 # Number of hours after Tmin until sunset.
-                m <- i - 5
-                T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp
+                m = i - 5;
+                T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp;
                 if (T[i] < 8.4) {
-                    dh[i] <- 0
+                    dh[i] = 0;
                 }
                 else {
-                    dh[i] <- T[i] - 8.4
+                    dh[i] = T[i] - 8.4;
                 }
             }
             else if (i > settime) {
-                n <- i - settime
-                T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z)
+                n = i - settime;
+                T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z);
                 if (T[i] < 8.4) {
-                    dh[i] <- 0
+                    dh[i] = 0;
                 }
                 else {
-                    dh[i] <- T[i] - 8.4
+                    dh[i] = T[i] - 8.4;
                 }
             }
             else {
-                n <- i + 24 - settime
-                T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z)
+                n = i + 24 - settime;
+                T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z);
                 if (T[i] < 8.4) {
-                    dh[i] <- 0
+                    dh[i] = 0;
                 }
                 else {
-                    dh[i] <- T[i] - 8.4
+                    dh[i] = T[i] - 8.4;
                 }
             }
         }
-        averages <- sum(dh) / 24
+        averages = sum(dh) / 24;
     }
     return(c(curr_mean_temp, averages))
 }
 
 mortality.adult = function(temperature) {
     if (temperature < 12.7) {
-        mortality.probability = 0.002
+        mortality.probability = 0.002;
     }
     else {
-        mortality.probability = temperature * 0.0005 + 0.02
+        mortality.probability = temperature * 0.0005 + 0.02;
     }
     return(mortality.probability)
 }
 
 mortality.egg = function(temperature) {
     if (temperature < 12.7) {
-        mortality.probability = 0.8
+        mortality.probability = 0.8;
     }
     else {
-        mortality.probability = 0.8 - temperature / 40.0
+        mortality.probability = 0.8 - temperature / 40.0;
         if (mortality.probability < 0) {
-            mortality.probability = 0.01
+            mortality.probability = 0.01;
         }
     }
     return(mortality.probability)
@@ -169,171 +189,174 @@
 
 mortality.nymph = function(temperature) {
     if (temperature < 12.7) {
-        mortality.probability = 0.03
+        mortality.probability = 0.03;
     }
     else {
-        mortality.probability = temperature * 0.0008 + 0.03
+        mortality.probability = temperature * 0.0008 + 0.03;
     }
-    return(mortality.probability)
+    return(mortality.probability);
 }
 
 parse_input_data = function(input_file, num_rows) {
     # Read in the input temperature datafile into a data frame.
-    temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",")
-    num_columns <- dim(temperature_data_frame)[2]
+    temperature_data_frame = read.csv(file=input_file, header=T, strip.white=TRUE, sep=",");
+    num_columns = dim(temperature_data_frame)[2];
     if (num_columns == 6) {
         # The input data has the following 6 columns:
         # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
         # Set the column names for access when adding daylight length..
-        colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX")
+        colnames(temperature_data_frame) = c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX");
         # Add a column containing the daylight length for each day.
-        temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows)
+        temperature_data_frame = add_daylight_length(temperature_data_frame, num_columns, num_rows);
         # Reset the column names with the additional column for later access.
-        colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN")
+        colnames(temperature_data_frame) = c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN");
     }
-    return(temperature_data_frame)
+    return(temperature_data_frame);
 }
 
+
 render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error,
-                        group1, group2, group3, group1_std_error, group2_std_error, group3_std_error) {
+                        group1, group2, group3, group1_std_error, group2_std_error, group3_std_error, date_labels) {
     if (chart_type == "pop_size_by_life_stage") {
-        title <- paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-        legend_text <- c("Egg", "Nymph", "Adult")
-        columns <- c(4, 2, 1)
+        title = paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ");
+        legend_text = c("Egg", "Nymph", "Adult");
+        columns = c(4, 2, 1);
     } else if (chart_type == "pop_size_by_generation") {
-        title <- paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-        legend_text <- c("P", "F1", "F2")
-        columns <- c(1, 2, 4)
+        title = paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ");
+        legend_text = c("P", "F1", "F2");
+        columns = c(1, 2, 4);
     } else if (chart_type == "adult_pop_size_by_generation") {
-        title <- paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ")
-        legend_text <- c("P", "F1", "F2")
-        columns <- c(1, 2, 4)
+        title = paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ");
+        legend_text = c("P", "F1", "F2");
+        columns = c(1, 2, 4);
     }
-    plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3)
-    legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3)
-    lines(days, group2, lwd=2, lty=1, col=2)
-    lines(days, group3, lwd=2, lty=1, col=4)
-    axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
-    axis(2, cex.axis=3)
+    plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3);
+    legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3);
+    lines(days, group2, lwd=2, lty=1, col=2);
+    lines(days, group3, lwd=2, lty=1, col=4);
+    axis(1, at=c(1:length(date_labels)) * 30 - 15, cex.axis=3, labels=date_labels);
+    axis(2, cex.axis=3);
     if (plot_std_error==1) {
         # Standard error for group1.
-        lines(days, group1+group1_std_error, lty=2)
-        lines (days, group1-group1_std_error, lty=2)
+        lines(days, group1+group1_std_error, lty=2);
+        lines(days, group1-group1_std_error, lty=2);
         # Standard error for group2.
-        lines(days, group2+group2_std_error, col=2, lty=2)
-        lines(days, group2-group2_std_error, col=2, lty=2)
+        lines(days, group2+group2_std_error, col=2, lty=2);
+        lines(days, group2-group2_std_error, col=2, lty=2);
         # Standard error for group3.
-        lines(days, group3+group3_std_error, col=4, lty=2)
-        lines(days, group3-group3_std_error, col=4, lty=2)
+        lines(days, group3+group3_std_error, col=4, lty=2);
+        lines(days, group3-group3_std_error, col=4, lty=2);
     }
 }
 
-temperature_data_frame <- parse_input_data(opt$input, opt$num_days)
+temperature_data_frame = parse_input_data(opt$input, opt$num_days);
 # All latitude values are the same, so get the value from the first row.
-latitude <- temperature_data_frame$LATITUDE[1]
+latitude = temperature_data_frame$LATITUDE[1];
+num_columns = dim(temperature_data_frame)[2];
+date_labels = get_date_labels(temperature_data_frame, opt$num_days);
 
 # Initialize matrices.
-Eggs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-YoungNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-OldNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-Previtellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-Vitellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-Diapausing.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+Eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+YoungNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+OldNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+Previtellogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+Vitellogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+Diapausing.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
 
-newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+newborn.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+adult.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+death.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
 
-P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
-F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+P.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+P_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+F1.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+F1_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+F2.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
+F2_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
 
-population.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications)
+population.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
 
 # Process replications.
 for (N.replications in 1:opt$replications) {
     # Start with the user-defined number of insects per replication.
-    num_insects <- opt$insects_per_replication
+    num_insects = opt$insects_per_replication;
     # Generation, Stage, degree-days, T, Diapause.
-    vector.ini <- c(0, 3, 0, 0, 0)
+    vector.ini = c(0, 3, 0, 0, 0);
     # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause.
-    vector.matrix <- rep(vector.ini, num_insects)
+    vector.matrix = rep(vector.ini, num_insects);
     # Complete matrix for the population.
-    vector.matrix <- base::t(matrix(vector.matrix, nrow=5))
+    vector.matrix = base::t(matrix(vector.matrix, nrow=5));
     # Time series of population size.
-    Eggs <- rep(0, opt$num_days)
-    YoungNymphs <- rep(0, opt$num_days)
-    OldNymphs <- rep(0, opt$num_days)
-    Previtellogenic <- rep(0, opt$num_days)
-    Vitellogenic <- rep(0, opt$num_days)
-    Diapausing <- rep(0, opt$num_days)
+    Eggs = rep(0, opt$num_days);
+    YoungNymphs = rep(0, opt$num_days);
+    OldNymphs = rep(0, opt$num_days);
+    Previtellogenic = rep(0, opt$num_days);
+    Vitellogenic = rep(0, opt$num_days);
+    Diapausing = rep(0, opt$num_days);
 
-    N.newborn <- rep(0, opt$num_days)
-    N.adult <- rep(0, opt$num_days)
-    N.death <- rep(0, opt$num_days)
+    N.newborn = rep(0, opt$num_days);
+    N.adult = rep(0, opt$num_days);
+    N.death = rep(0, opt$num_days);
 
-    overwintering_adult.population <- rep(0, opt$num_days)
-    first_generation.population <- rep(0, opt$num_days)
-    second_generation.population <- rep(0, opt$num_days)
+    overwintering_adult.population = rep(0, opt$num_days);
+    first_generation.population = rep(0, opt$num_days);
+    second_generation.population = rep(0, opt$num_days);
 
-    P.adult <- rep(0, opt$num_days)
-    F1.adult <- rep(0, opt$num_days)
-    F2.adult <- rep(0, opt$num_days)
+    P.adult = rep(0, opt$num_days);
+    F1.adult = rep(0, opt$num_days);
+    F2.adult = rep(0, opt$num_days);
 
-    total.population <- NULL
+    total.population = NULL;
 
-    averages.day <- rep(0, opt$num_days)
+    averages.day = rep(0, opt$num_days);
     # All the days included in the input temperature dataset.
     for (row in 1:opt$num_days) {
         # Get the integer day of the year for the current row.
-        doy <- temperature_data_frame$DOY[row]
+        doy = temperature_data_frame$DOY[row];
         # Photoperiod in the day.
-        photoperiod <- temperature_data_frame$DAYLEN[row]
-        temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days)
-        mean.temp <- temp.profile[1]
-        averages.temp <- temp.profile[2]
-        averages.day[row] <- averages.temp
+        photoperiod = temperature_data_frame$DAYLEN[row];
+        temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days);
+        mean.temp = temp.profile[1];
+        averages.temp = temp.profile[2];
+        averages.day[row] = averages.temp;
         # Trash bin for death.
-        death.vector <- NULL
+        death.vector = NULL;
         # Newborn.
-        birth.vector <- NULL
+        birth.vector = NULL;
         # All individuals.
         for (i in 1:num_insects) {
             # Individual record.
-            vector.individual <- vector.matrix[i,]
+            vector.individual = vector.matrix[i,];
             # Adjustment for late season mortality rate (still alive?).
             if (latitude < 40.0) {
-                post.mortality <- 1
-                day.kill <- 300
+                post.mortality = 1;
+                day.kill = 300;
             }
             else {
-                post.mortality <- 2
-                day.kill <- 250
+                post.mortality = 2;
+                day.kill = 250;
             }
             if (vector.individual[2] == 0) {
                 # Egg.
-                death.probability = opt$egg_mortality * mortality.egg(mean.temp)
+                death.probability = opt$egg_mortality * mortality.egg(mean.temp);
             }
             else if (vector.individual[2] == 1 | vector.individual[2] == 2) {
-                death.probability = opt$nymph_mortality * mortality.nymph(mean.temp)
+                death.probability = opt$nymph_mortality * mortality.nymph(mean.temp);
             }
             else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) {
                 # Adult.
                 if (doy < day.kill) {
-                    death.probability = opt$adult_mortality * mortality.adult(mean.temp)
+                    death.probability = opt$adult_mortality * mortality.adult(mean.temp);
                 }
                 else {
                     # Increase adult mortality after fall equinox.
-                    death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp)
+                    death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp);
                 }
             }
             # Dependent on temperature and life stage?
-            u.d <- runif(1)
+            u.d = runif(1);
             if (u.d < death.probability) {
-                death.vector <- c(death.vector, i)
+                death.vector = c(death.vector, i);
             }
             else {
                 # End of diapause.
@@ -342,32 +365,32 @@
                     if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) {
                         # Add 68C to become fully reproductively matured.
                         # Transfer to vittelogenic.
-                        vector.individual <- c(0, 4, 0, 0, 0)
-                        vector.matrix[i,] <- vector.individual
+                        vector.individual = c(0, 4, 0, 0, 0);
+                        vector.matrix[i,] = vector.individual;
                     }
                     else {
                         # Add to # Add average temperature for current day.
-                        vector.individual[3] <- vector.individual[3] + averages.temp
+                        vector.individual[3] = vector.individual[3] + averages.temp;
                         # Add 1 day in current stage.
-                        vector.individual[4] <- vector.individual[4] + 1
-                        vector.matrix[i,] <- vector.individual
+                        vector.individual[4] = vector.individual[4] + 1;
+                        vector.matrix[i,] = vector.individual;
                     }
                 }
                 if (vector.individual[1] != 0 && vector.individual[2] == 3) {
                     # Not overwintering adult (previttelogenic).
-                    current.gen <- vector.individual[1]
+                    current.gen = vector.individual[1];
                     if (vector.individual[3] > 68) {
                         # Add 68C to become fully reproductively matured.
                         # Transfer to vittelogenic.
-                        vector.individual <- c(current.gen, 4, 0, 0, 0)
-                        vector.matrix[i,] <- vector.individual
+                        vector.individual = c(current.gen, 4, 0, 0, 0);
+                        vector.matrix[i,] = vector.individual;
                     }
                     else {
                         # Add average temperature for current day.
-                        vector.individual[3] <- vector.individual[3] + averages.temp
+                        vector.individual[3] = vector.individual[3] + averages.temp;
                         # Add 1 day in current stage.
-                        vector.individual[4] <- vector.individual[4] + 1
-                        vector.matrix[i,] <- vector.individual
+                        vector.individual[4] = vector.individual[4] + 1;
+                        vector.matrix[i,] = vector.individual;
                     }
                 }
                 # Oviposition -- where population dynamics comes from.
@@ -375,31 +398,31 @@
                     # Vittelogenic stage, overwintering generation.
                     if (vector.individual[4] == 0) {
                         # Just turned in vittelogenic stage.
-                        num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
+                        num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size));
                     }
                     else {
                         # Daily probability of birth.
-                        p.birth = opt$oviposition * 0.01
-                        u1 <- runif(1)
+                        p.birth = opt$oviposition * 0.01;
+                        u1 = runif(1);
                         if (u1 < p.birth) {
-                            num_insects.birth = round(runif(1, 2, 8))
+                            num_insects.birth = round(runif(1, 2, 8));
                         }
                     }
                     # Add average temperature for current day.
-                    vector.individual[3] <- vector.individual[3] + averages.temp
+                    vector.individual[3] = vector.individual[3] + averages.temp;
                     # Add 1 day in current stage.
-                    vector.individual[4] <- vector.individual[4] + 1
-                    vector.matrix[i,] <- vector.individual
+                    vector.individual[4] = vector.individual[4] + 1;
+                    vector.matrix[i,] = vector.individual;
                     if (num_insects.birth > 0) {
                         # Add new birth -- might be in different generations.
-                        new.gen <- vector.individual[1] + 1
+                        new.gen = vector.individual[1] + 1;
                         # Egg profile.
-                        new.individual <- c(new.gen, 0, 0, 0, 0)
-                        new.vector <- rep(new.individual, num_insects.birth)
+                        new.individual = c(new.gen, 0, 0, 0, 0);
+                        new.vector = rep(new.individual, num_insects.birth);
                         # Update batch of egg profile.
-                        new.vector <- t(matrix(new.vector, nrow=5))
+                        new.vector = t(matrix(new.vector, nrow=5));
                         # Group with total eggs laid in that day.
-                        birth.vector <- rbind(birth.vector, new.vector)
+                        birth.vector = rbind(birth.vector, new.vector);
                     }
                 }
                 # Oviposition -- for generation 1.
@@ -407,244 +430,245 @@
                     # Vittelogenic stage, 1st generation
                     if (vector.individual[4] == 0) {
                         # Just turned in vittelogenic stage.
-                        num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size))
+                        num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size));
                     }
                     else {
                         # Daily probability of birth.
-                        p.birth = opt$oviposition * 0.01
-                        u1 <- runif(1)
+                        p.birth = opt$oviposition * 0.01;
+                        u1 = runif(1);
                         if (u1 < p.birth) {
-                            num_insects.birth = round(runif(1, 2, 8))
+                            num_insects.birth = round(runif(1, 2, 8));
                         }
                     }
                     # Add average temperature for current day.
-                    vector.individual[3] <- vector.individual[3] + averages.temp
+                    vector.individual[3] = vector.individual[3] + averages.temp;
                     # Add 1 day in current stage.
-                    vector.individual[4] <- vector.individual[4] + 1
-                    vector.matrix[i,] <- vector.individual
+                    vector.individual[4] = vector.individual[4] + 1;
+                    vector.matrix[i,] = vector.individual;
                     if (num_insects.birth > 0) {
                         # Add new birth -- might be in different generations.
-                        new.gen <- vector.individual[1] + 1
+                        new.gen = vector.individual[1] + 1;
                         # Egg profile.
-                        new.individual <- c(new.gen, 0, 0, 0, 0)
-                        new.vector <- rep(new.individual, num_insects.birth)
+                        new.individual = c(new.gen, 0, 0, 0, 0);
+                        new.vector = rep(new.individual, num_insects.birth);
                         # Update batch of egg profile.
-                        new.vector <- t(matrix(new.vector, nrow=5))
+                        new.vector = t(matrix(new.vector, nrow=5));
                         # Group with total eggs laid in that day.
-                        birth.vector <- rbind(birth.vector, new.vector)
+                        birth.vector = rbind(birth.vector, new.vector);
                     }
                 }
                 # Egg to young nymph.
                 if (vector.individual[2] == 0) {
                     # Add average temperature for current day.
-                    vector.individual[3] <- vector.individual[3] + averages.temp
+                    vector.individual[3] = vector.individual[3] + averages.temp;
                     if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) {
                         # From egg to young nymph, degree-days requirement met.
-                        current.gen <- vector.individual[1]
+                        current.gen = vector.individual[1];
                         # Transfer to young nymph stage.
-                        vector.individual <- c(current.gen, 1, 0, 0, 0)
+                        vector.individual = c(current.gen, 1, 0, 0, 0);
                     }
                     else {
                         # Add 1 day in current stage.
-                        vector.individual[4] <- vector.individual[4] + 1
+                        vector.individual[4] = vector.individual[4] + 1;
                     }
-                    vector.matrix[i,] <- vector.individual
+                    vector.matrix[i,] = vector.individual;
                 }
                 # Young nymph to old nymph.
                 if (vector.individual[2] == 1) {
                     # Add average temperature for current day.
-                    vector.individual[3] <- vector.individual[3] + averages.temp
+                    vector.individual[3] = vector.individual[3] + averages.temp;
                     if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) {
                         # From young to old nymph, degree_days requirement met.
-                        current.gen <- vector.individual[1]
+                        current.gen = vector.individual[1];
                         # Transfer to old nym stage.
-                        vector.individual <- c(current.gen, 2, 0, 0, 0)
+                        vector.individual = c(current.gen, 2, 0, 0, 0);
                         if (photoperiod < opt$photoperiod && doy > 180) {
-                            vector.individual[5] <- 1
+                            vector.individual[5] = 1;
                         } # Prepare for diapausing.
                     }
                     else {
                         # Add 1 day in current stage.
-                        vector.individual[4] <- vector.individual[4] + 1
+                        vector.individual[4] = vector.individual[4] + 1;
                     }
-                    vector.matrix[i,] <- vector.individual
+                    vector.matrix[i,] = vector.individual;
                 }
                 # Old nymph to adult: previttelogenic or diapausing?
                 if (vector.individual[2] == 2) {
                     # Add average temperature for current day.
-                    vector.individual[3] <- vector.individual[3] + averages.temp
+                    vector.individual[3] = vector.individual[3] + averages.temp;
                     if (vector.individual[3] >= (200+opt$adult_accumulation)) {
                         # From old to adult, degree_days requirement met.
-                        current.gen <- vector.individual[1]
+                        current.gen = vector.individual[1];
                         if (vector.individual[5] == 0) {
                             # Previttelogenic.
-                            vector.individual <- c(current.gen, 3, 0, 0, 0)
+                            vector.individual = c(current.gen, 3, 0, 0, 0);
                         }
                         else {
                             # Diapausing.
-                            vector.individual <- c(current.gen, 5, 0, 0, 1)
+                            vector.individual = c(current.gen, 5, 0, 0, 1);
                         }
                     }
                     else {
                         # Add 1 day in current stage.
-                        vector.individual[4] <- vector.individual[4] + 1
+                        vector.individual[4] = vector.individual[4] + 1;
                     }
-                    vector.matrix[i,] <- vector.individual
+                    vector.matrix[i,] = vector.individual;
                 }
                 # Growing of diapausing adult (unimportant, but still necessary).
                 if (vector.individual[2] == 5) {
-                    vector.individual[3] <- vector.individual[3] + averages.temp
-                    vector.individual[4] <- vector.individual[4] + 1
-                    vector.matrix[i,] <- vector.individual
+                    vector.individual[3] = vector.individual[3] + averages.temp;
+                    vector.individual[4] = vector.individual[4] + 1;
+                    vector.matrix[i,] = vector.individual;
                 }
             } # Else if it is still alive.
         } # End of the individual bug loop.
 
         # Number of deaths.
-        num_insects.death <- length(death.vector)
+        num_insects.death = length(death.vector);
         if (num_insects.death > 0) {
             # Remove record of dead.
-            vector.matrix <- vector.matrix[-death.vector, ]
+            vector.matrix = vector.matrix[-death.vector,];
         }
         # Number of births.
-        num_insects.newborn <- length(birth.vector[,1])
-        vector.matrix <- rbind(vector.matrix, birth.vector)
+        num_insects.newborn = length(birth.vector[,1]);
+        vector.matrix = rbind(vector.matrix, birth.vector);
         # Update population size for the next day.
-        num_insects <- num_insects - num_insects.death + num_insects.newborn
+        num_insects = num_insects - num_insects.death + num_insects.newborn;
 
         # Aggregate results by day.
         # Egg population size.
-        Eggs[row] <- sum(vector.matrix[,2]==0)
+        Eggs[row] = sum(vector.matrix[,2]==0);
         # Young nymph population size.
-        YoungNymphs[row] <- sum(vector.matrix[,2]==1)
+        YoungNymphs[row] = sum(vector.matrix[,2]==1);
         # Old nymph population size.
-        OldNymphs[row] <- sum(vector.matrix[,2]==2)
+        OldNymphs[row] = sum(vector.matrix[,2]==2);
         # Previtellogenic population size.
-        Previtellogenic[row] <- sum(vector.matrix[,2]==3)
+        Previtellogenic[row] = sum(vector.matrix[,2]==3);
         # Vitellogenic population size.
-        Vitellogenic[row] <- sum(vector.matrix[,2]==4)
+        Vitellogenic[row] = sum(vector.matrix[,2]==4);
         # Diapausing population size.
-        Diapausing[row] <- sum(vector.matrix[,2]==5)
+        Diapausing[row] = sum(vector.matrix[,2]==5);
 
         # Newborn population size.
-        N.newborn[row] <- num_insects.newborn
+        N.newborn[row] = num_insects.newborn;
         # Adult population size.
-        N.adult[row] <- sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5)
+        N.adult[row] = sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5);
         # Dead population size.
-        N.death[row] <- num_insects.death
+        N.death[row] = num_insects.death;
 
-        total.population <- c(total.population, num_insects)
+        total.population = c(total.population, num_insects);
 
         # Overwintering adult population size.
-        overwintering_adult.population[row] <- sum(vector.matrix[,1]==0)
+        overwintering_adult.population[row] = sum(vector.matrix[,1]==0);
         # First generation population size.
-        first_generation.population[row] <- sum(vector.matrix[,1]==1)
+        first_generation.population[row] = sum(vector.matrix[,1]==1);
         # Second generation population size.
-        second_generation.population[row] <- sum(vector.matrix[,1]==2)
+        second_generation.population[row] = sum(vector.matrix[,1]==2);
 
         # P adult population size.
-        P.adult[row] <- sum(vector.matrix[,1]==0)
+        P.adult[row] = sum(vector.matrix[,1]==0);
         # F1 adult population size.
-        F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5))
+        F1.adult[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5));
         # F2 adult population size
-        F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5))
+        F2.adult[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5));
     }   # End of days specified in the input temperature data.
 
-    averages.cum <- cumsum(averages.day)
+    averages.cum = cumsum(averages.day);
 
     # Define the output values.
-    Eggs.replications[,N.replications] <- Eggs
-    YoungNymphs.replications[,N.replications] <- YoungNymphs
-    OldNymphs.replications[,N.replications] <- OldNymphs
-    Previtellogenic.replications[,N.replications] <- Previtellogenic
-    Vitellogenic.replications[,N.replications] <- Vitellogenic
-    Diapausing.replications[,N.replications] <- Diapausing
+    Eggs.replications[,N.replications] = Eggs;
+    YoungNymphs.replications[,N.replications] = YoungNymphs;
+    OldNymphs.replications[,N.replications] = OldNymphs;
+    Previtellogenic.replications[,N.replications] = Previtellogenic;
+    Vitellogenic.replications[,N.replications] = Vitellogenic;
+    Diapausing.replications[,N.replications] = Diapausing;
 
-    newborn.replications[,N.replications] <- N.newborn
-    adult.replications[,N.replications] <- N.adult
-    death.replications[,N.replications] <- N.death
+    newborn.replications[,N.replications] = N.newborn;
+    adult.replications[,N.replications] = N.adult;
+    death.replications[,N.replications] = N.death;
 
-    P.replications[,N.replications] <- overwintering_adult.population
-    P_adults.replications[,N.replications] <- P.adult
-    F1.replications[,N.replications] <- first_generation.population
-    F1_adults.replications[,N.replications] <- F1.adult
-    F2.replications[,N.replications] <- second_generation.population
-    F2_adults.replications[,N.replications] <- F2.adult
+    P.replications[,N.replications] = overwintering_adult.population;
+    P_adults.replications[,N.replications] = P.adult;
+    F1.replications[,N.replications] = first_generation.population;
+    F1_adults.replications[,N.replications] = F1.adult;
+    F2.replications[,N.replications] = second_generation.population;
+    F2_adults.replications[,N.replications] = F2.adult;
 
-    population.replications[,N.replications] <- total.population
+    population.replications[,N.replications] = total.population;
 }
 
 # Mean value for eggs.
-eggs <- apply(Eggs.replications, 1, mean)
+eggs = apply(Eggs.replications, 1, mean);
 # Standard error for eggs.
-eggs.std_error <- apply(Eggs.replications, 1, sd) / sqrt(opt$replications)
+eggs.std_error = apply(Eggs.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for nymphs.
-nymphs <- apply((YoungNymphs.replications+OldNymphs.replications), 1, mean)
+nymphs = apply((YoungNymphs.replications+OldNymphs.replications), 1, mean);
 # Standard error for nymphs.
-nymphs.std_error <- apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd)
+nymphs.std_error = apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd);
 
 # Mean value for adults.
-adults <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean)
+adults = apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean);
 # Standard error for adults.
-adults.std_error <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications)
+adults.std_error = apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications);
 
 # Mean value for P.
-P <- apply(P.replications, 1, mean)
+P = apply(P.replications, 1, mean);
 # Standard error for P.
-P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications)
+P.std_error = apply(P.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for P adults.
-P_adults <- apply(P_adults.replications, 1, mean)
+P_adults = apply(P_adults.replications, 1, mean);
 # Standard error for P_adult.
-P_adults.std_error <- apply(P_adults.replications, 1, sd) / sqrt(opt$replications)
+P_adults.std_error = apply(P_adults.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for F1.
-F1 <- apply(F1.replications, 1, mean)
+F1 = apply(F1.replications, 1, mean);
 # Standard error for F1.
-F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications)
+F1.std_error = apply(F1.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for F1 adults.
-F1_adults <- apply(F1_adults.replications, 1, mean)
+F1_adults = apply(F1_adults.replications, 1, mean);
 # Standard error for F1 adult.
-F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications)
+F1_adults.std_error = apply(F1_adults.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for F2.
-F2 <- apply(F2.replications, 1, mean)
+F2 = apply(F2.replications, 1, mean);
 # Standard error for F2.
-F2.std_error <- apply(F2.replications, 1, sd) / sqrt(opt$replications)
+F2.std_error = apply(F2.replications, 1, sd) / sqrt(opt$replications);
 
 # Mean value for F2 adults.
-F2_adults <- apply(F2_adults.replications, 1, mean)
+F2_adults = apply(F2_adults.replications, 1, mean);
 # Standard error for F2 adult.
-F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications)
+F2_adults.std_error = apply(F2_adults.replications, 1, sd) / sqrt(opt$replications);
 
 # Display the total number of days in the Galaxy history item blurb.
-cat("Number of days: ", opt$num_days, "\n")
+cat("Number of days: ", opt$num_days, "\n");
 
-dev.new(width=20, height=30)
+dev.new(width=20, height=30);
 
 # Start PDF device driver to save charts to output.
-pdf(file=opt$output, width=20, height=30, bg="white")
-par(mar=c(5, 6, 4, 4), mfrow=c(3, 1))
+pdf(file=opt$output, width=20, height=30, bg="white");
+par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
 
 # Data analysis and visualization plots only within a single calendar year.
-days <- c(1:opt$num_days)
-start_date <- temperature_data_frame$DATE[1]
-end_date <- temperature_data_frame$DATE[opt$num_days]
+days = c(1:opt$num_days);
+start_date = temperature_data_frame$DATE[1];
+end_date = temperature_data_frame$DATE[opt$num_days];
 
 # Subfigure 1: population size by life stage.
-maxval <- max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error)
+maxval = max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error);
 render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
-             opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error)
+             opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error, date_labels);
 # Subfigure 2: population size by generation.
-maxval <- max(F2)
+maxval = max(F2);
 render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
-             opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error)
+             opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error, date_labels);
 # Subfigure 3: adult population size by generation.
-maxval <- max(F2_adults) + 100
+maxval = max(F2_adults) + 100;
 render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
-             opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error)
+             opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error,
+             date_labels);
 
 # Turn off device driver to flush output.
-dev.off()
+dev.off();