Mercurial > repos > greg > insect_phenology_model
view insect_phenology_model.R @ 4:e7b1fc0133bb draft
Uploaded
author | greg |
---|---|
date | Mon, 13 Nov 2017 12:57:46 -0500 |
parents | 24fa0d35a8bf |
children | 1878a03f9c9f |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) option_list <- list( make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"), make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"), make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"), make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"), make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"), make_option(c("-n", "--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"), make_option(c("-v", "--input"), action="store", dest="input", help="Temperature data for selected location"), make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options get_daylight_length = function(latitude, temperature_data, num_days) { # Return a vector of daylight length (photoperido profile) for # the number of days specified in the input temperature data # (from Forsythe 1995). p = 0.8333 daylight_length_vector <- NULL for (i in 1:num_days) { # Get the day of the year from the current row # of the temperature data for computation. doy <- temperature_data[i, 4] theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) phi <- asin(0.39795 * cos(theta)) # Compute the length of daylight for the day of the year. daylight_length_vector[i] <- 24 - (24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))) } daylight_length_vector } get_temperature_at_hour = function(latitude, temperature_data, daylight_length_vector, row, num_days) { # Base development threshold for Brown Marmolated Stink Bug # insect phenology model. # TODO: Pass insect on the command line to accomodate more # the just the Brown Marmolated Stink Bub. threshold <- 14.17 # Input temperature currently has the following columns. # # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX # Minimum temperature for current row. dnp <- temperature_data[row, 5] # Maximum temperature for current row. dxp <- temperature_data[row, 6] # Mean temperature for current row. dmean <- 0.5 * (dnp + dxp) # Initialize degree day accumulation dd <- 0 if (dxp < threshold) { dd <- 0 } else { # Initialize hourly temperature. T <- NULL # Initialize degree hour vector. dh <- NULL # Daylight length for current row. y <- daylight_length_vector[row] # Darkness length. z <- 24 - y # Lag coefficient. a <- 1.86 # Darkness coefficient. b <- 2.20 # Sunrise time. risetime <- 12 - y / 2 # Sunset time. settime <- 12 + y / 2 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp for (i in 1:24) { if (i > risetime && i < settime) { # Number of hours after Tmin until sunset. m <- i - 5 T[i] = (dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else if (i > settime) { n <- i - settime T[i] = dnp + (ts - dnp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else { n <- i + 24 - settime T[i]=dnp + (ts - dnp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } } dd <- sum(dh) / 24 } return=c(dmean, dd) return } dev.egg = function(temperature) { dev.rate= -0.9843 * temperature + 33.438 return = dev.rate return } dev.young = function(temperature) { n12 <- -0.3728 * temperature + 14.68 n23 <- -0.6119 * temperature + 25.249 dev.rate = mean(n12 + n23) return = dev.rate return } dev.old = function(temperature) { n34 <- -0.6119 * temperature + 17.602 n45 <- -0.4408 * temperature + 19.036 dev.rate = mean(n34 + n45) return = dev.rate return } dev.emerg = function(temperature) { emerg.rate <- -0.5332 * temperature + 24.147 return = emerg.rate return } mortality.egg = function(temperature) { if (temperature < 12.7) { mort.prob = 0.8 } else { mort.prob = 0.8 - temperature / 40.0 if (mort.prob < 0) { mort.prob = 0.01 } } return = mort.prob return } mortality.nymph = function(temperature) { if (temperature < 12.7) { mort.prob = 0.03 } else { mort.prob = temperature * 0.0008 + 0.03 } return = mort.prob return } mortality.adult = function(temperature) { if (temperature < 12.7) { mort.prob = 0.002 } else { mort.prob = temperature * 0.0005 + 0.02 } return = mort.prob return } # Read in the input temperature datafile into a Data Frame object. # The input data currently must have 6 columns: # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX temperature_data <- read.csv(file=opt$input, header=T, strip.white=TRUE, sep=",") start_date <- temperature_data[1, 3] end_date <- temperature_data[opt$num_days, 3] latitude <- temperature_data[1, 1] daylight_length_vector <- get_daylight_length(latitude, temperature_data, opt$num_days) cat("Number of days: ", opt$num_days, "\n") # Initialize matrix for results from all replications. S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol = opt$replications) newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, opt$num_days * opt$replications), ncol=opt$replications) # loop through replications for (N.rep in 1:opt$replications) { # During each replication start with 1000 individuals. # TODO: user definable as well? n <- 1000 # Generation, Stage, DD, T, Diapause. vec.ini <- c(0, 3, 0, 0, 0) # Overwintering, previttelogenic, DD=0, T=0, no-diapause. vec.mat <- rep(vec.ini, n) # Complete matrix for the population. vec.mat <- base::t(matrix(vec.mat, nrow=5)) # Time series of population size. tot.pop <- NULL gen0.pop <- rep(0, opt$num_days) gen1.pop <- rep(0, opt$num_days) gen2.pop <- rep(0, opt$num_days) S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, opt$num_days) g0.adult <- g1.adult <- g2.adult <- rep(0, opt$num_days) N.newborn <- N.death <- N.adult <- rep(0, opt$num_days) dd.day <- rep(0, opt$num_days) # All the days included in the input temperature dataset. for (row in 1:opt$num_days) { # Get the integer day of the year for the current row. doy <- temperature_data[row, 4] # Photoperiod in the day. photoperiod <- daylight_length_vector[row] temp.profile <- get_temperature_at_hour(latitude, temperature_data, daylight_length_vector, row, opt$num_days) mean.temp <- temp.profile[1] dd.temp <- temp.profile[2] dd.day[row] <- dd.temp # Trash bin for death. death.vec <- NULL # Newborn. birth.vec <- NULL # All individuals. for (i in 1:n) { # Find individual record. vec.ind <- vec.mat[i,] # First of all, still alive? # Adjustment for late season mortality rate. if (latitude < 40.0) { post.mort <- 1 day.kill <- 300 } else { post.mort <- 2 day.kill <- 250 } if (vec.ind[2] == 0) { # Egg. death.prob = opt$egg_mort * mortality.egg(mean.temp) } else if (vec.ind[2] == 1 | vec.ind[2] == 2) { death.prob = opt$nymph_mort * mortality.nymph(mean.temp) } else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) { # For adult. if (doy < day.kill) { death.prob = opt$adult_mort * mortality.adult(mean.temp) } else { # Increase adult mortality after fall equinox. death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp) } } # (or dependent on temperature and life stage?) u.d <- runif(1) if (u.d < death.prob) { death.vec <- c(death.vec, i) } else { # Aggregrate index of dead bug. # Event 1 end of diapause. if (vec.ind[1] == 0 && vec.ind[2] == 3) { # Overwintering adult (previttelogenic). if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && doy < 180) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vec.ind <- c(0, 4, 0, 0, 0) vec.mat[i,] <- vec.ind } else { # Add to dd. vec.ind[3] <- vec.ind[3] + dd.temp # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind } } if (vec.ind[1] != 0 && vec.ind[2] == 3) { # Not overwintering adult (previttelogenic). current.gen <- vec.ind[1] if (vec.ind[3] > 68) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vec.ind <- c(current.gen, 4, 0, 0, 0) vec.mat[i,] <- vec.ind } else { # Add to dd. vec.ind[3] <- vec.ind[3] + dd.temp # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind } } # Event 2 oviposition -- where population dynamics comes from. if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) { # Vittelogenic stage, overwintering generation. if (vec.ind[4] == 0) { # Just turned in vittelogenic stage. n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { n.birth=round(runif(1, 2, 8)) } } # Add to dd. vec.ind[3] <- vec.ind[3] + dd.temp # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind if (n.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vec.ind[1] + 1 # Egg profile. new.ind <- c(new.gen, 0, 0, 0, 0) new.vec <- rep(new.ind, n.birth) # Update batch of egg profile. new.vec <- t(matrix(new.vec, nrow=5)) # Group with total eggs laid in that day. birth.vec <- rbind(birth.vec, new.vec) } } # Event 2 oviposition -- for gen 1. if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && doy < 222) { # Vittelogenic stage, 1st generation if (vec.ind[4] == 0) { # Just turned in vittelogenic stage. n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { n.birth = round(runif(1, 2, 8)) } } # Add to dd. vec.ind[3] <- vec.ind[3] + dd.temp # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind if (n.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vec.ind[1] + 1 # Egg profile. new.ind <- c(new.gen, 0, 0, 0, 0) new.vec <- rep(new.ind, n.birth) # Update batch of egg profile. new.vec <- t(matrix(new.vec, nrow=5)) # Group with total eggs laid in that day. birth.vec <- rbind(birth.vec, new.vec) } } # Event 3 development (with diapause determination). # Event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg). if (vec.ind[2] == 0) { # Egg stage. # Add to dd. vec.ind[3] <- vec.ind[3] + dd.temp if (vec.ind[3] >= (68 + opt$young_nymph_accum)) { # From egg to young nymph, DD requirement met. current.gen <- vec.ind[1] # Transfer to young nymph stage. vec.ind <- c(current.gen, 1, 0, 0, 0) } else { # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # Event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause). if (vec.ind[2] == 1) { # young nymph stage. # add to dd. vec.ind[3] <- vec.ind[3] + dd.temp if (vec.ind[3] >= (250 + opt$old_nymph_accum)) { # From young to old nymph, dd requirement met. current.gen <- vec.ind[1] # Transfer to old nym stage. vec.ind <- c(current.gen, 2, 0, 0, 0) if (photoperiod < opt$photoperiod && doy > 180) { vec.ind[5] <- 1 } # Prepare for diapausing. } else { # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # Event 3.3 old nymph to adult: previttelogenic or diapausing? if (vec.ind[2] == 2) { # Old nymph stage. # add to dd. vec.ind[3] <- vec.ind[3] + dd.temp if (vec.ind[3] >= (200 + opt$adult_accum)) { # From old to adult, dd requirement met. current.gen <- vec.ind[1] if (vec.ind[5] == 0) { # Non-diapausing adult -- previttelogenic. vec.ind <- c(current.gen, 3, 0, 0, 0) } else { # Diapausing. vec.ind <- c(current.gen, 5, 0, 0, 1) } } else { # Add 1 day in current stage. vec.ind[4] <- vec.ind[4] + 1 } vec.mat[i,] <- vec.ind } # Event 4 growing of diapausing adult (unimportant, but still necessary). if (vec.ind[2] == 5) { vec.ind[3] <- vec.ind[3] + dd.temp vec.ind[4] <- vec.ind[4] + 1 vec.mat[i,] <- vec.ind } } # Else if it is still alive. } # End of the individual bug loop. # Find how many died. n.death <- length(death.vec) if (n.death > 0) { vec.mat <- vec.mat[-death.vec, ] } # Remove record of dead. # Find how many new born. n.newborn <- length(birth.vec[,1]) vec.mat <- rbind(vec.mat, birth.vec) # Update population size for the next day. n <- n - n.death + n.newborn # Aggregate results by day. tot.pop <- c(tot.pop, n) # Egg. s0 <- sum(vec.mat[,2] == 0) # Young nymph. s1 <- sum(vec.mat[,2] == 1) # Old nymph. s2 <- sum(vec.mat[,2] == 2) # Previtellogenic. s3 <- sum(vec.mat[,2] == 3) # Vitellogenic. s4 <- sum(vec.mat[,2] == 4) # Diapausing. s5 <- sum(vec.mat[,2] == 5) # Overwintering adult. gen0 <- sum(vec.mat[,1] == 0) # First generation. gen1 <- sum(vec.mat[,1] == 1) # Second generation. gen2 <- sum(vec.mat[,1] == 2) # Sum of all adults. n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5) # Generation 0 pop size. gen0.pop[row] <- gen0 gen1.pop[row] <- gen1 gen2.pop[row] <- gen2 S0[row] <- s0 S1[row] <- s1 S2[row] <- s2 S3[row] <- s3 S4[row] <- s4 S5[row] <- s5 g0.adult[row] <- sum(vec.mat[,1] == 0) g1.adult[row] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5)) g2.adult[row] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5)) N.newborn[row] <- n.newborn N.death[row] <- n.death N.adult[row] <- n.adult } # end of days specified in the input temperature data dd.cum <- cumsum(dd.day) # Collect all the outputs. S0.rep[,N.rep] <- S0 S1.rep[,N.rep] <- S1 S2.rep[,N.rep] <- S2 S3.rep[,N.rep] <- S3 S4.rep[,N.rep] <- S4 S5.rep[,N.rep] <- S5 newborn.rep[,N.rep] <- N.newborn death.rep[,N.rep] <- N.death adult.rep[,N.rep] <- N.adult pop.rep[,N.rep] <- tot.pop g0.rep[,N.rep] <- gen0.pop g1.rep[,N.rep] <- gen1.pop g2.rep[,N.rep] <- gen2.pop g0a.rep[,N.rep] <- g0.adult g1a.rep[,N.rep] <- g1.adult g2a.rep[,N.rep] <- g2.adult } # Data analysis and visualization can currently # plot only within a single calendar year. # TODO: enhance this to accomodate multiple calendar years. n.yr <- 1 day.all <- c(1:opt$num_days * n.yr) # mean value for adults sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean) # mean value for nymphs sn <- apply((S1.rep + S2.rep), 1,mean) # mean value for eggs se <- apply(S0.rep, 1, mean) # mean value for P g0 <- apply(g0.rep, 1, mean) # mean value for F1 g1 <- apply(g1.rep, 1, mean) # mean value for F2 g2 <- apply(g2.rep, 1, mean) # mean value for P adult g0a <- apply(g0a.rep, 1, mean) # mean value for F1 adult g1a <- apply(g1a.rep, 1, mean) # mean value for F2 adult g2a <- apply(g2a.rep, 1, mean) # SE for adults sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications) # SE for nymphs sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd) # SE for eggs se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications) # SE value for P g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications) # SE for F1 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications) # SE for F2 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications) # SE for P adult g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications) # SE for F1 adult g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications) # SE for F2 adult g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications) dev.new(width=20, height=30) # Start PDF device driver to save charts to output. pdf(file=opt$output, width=20, height=30, bg="white") par(mar = c(5, 6, 4, 4), mfrow=c(3, 1)) # Subfigure 1: population size by life stage title <- paste("BSMB total population by life stage :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ") plot(day.all, sa, main=title, type="l", ylim=c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) # Young and old nymphs. lines(day.all, sn, lwd=2, lty=1, col=2) # Eggs lines(day.all, se, lwd=2, lty=1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) leg.text <- c("Egg", "Nymph", "Adult") legend("topleft", leg.text, lty=c(1, 1, 1), col=c(4, 2, 1), cex=3) if (opt$se_plot == 1) { # Add SE lines to plot # SE for adults lines (day.all, sa + sa.se, lty=2) lines (day.all, sa - sa.se, lty=2) # SE for nymphs lines (day.all, sn + sn.se, col=2, lty=2) lines (day.all, sn - sn.se, col=2, lty=2) # SE for eggs lines (day.all, se + se.se, col=4, lty=2) lines (day.all, se - se.se, col=4, lty=2) } # Subfigure 2: population size by generation title <- paste("BSMB total population by generation :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ") plot(day.all, g0, main=title, type="l", ylim=c(0, max(g2)), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) lines(day.all, g1, lwd = 2, lty = 1, col=2) lines(day.all, g2, lwd = 2, lty = 1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) leg.text <- c("P", "F1", "F2") legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) if (opt$se_plot == 1) { # Add SE lines to plot # SE for adults lines (day.all, g0+g0.se, lty=2) lines (day.all, g0-g0.se, lty=2) # SE for nymphs lines (day.all, g1+g1.se, col=2, lty=2) lines (day.all, g1-g1.se, col=2, lty=2) # SE for eggs lines (day.all, g2+g2.se, col=4, lty=2) lines (day.all, g2-g2.se, col=4, lty=2) } # Subfigure 3: adult population size by generation title <- paste("BSMB adult population by generation :", opt$location, ": Lat:", latitude, ":", start_date, "to", end_date, sep=" ") plot(day.all, g0a, ylim=c(0, max(g2a) + 100), main=title, type="l", axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) lines(day.all, g1a, lwd = 2, lty = 1, col=2) lines(day.all, g2a, lwd = 2, lty = 1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) leg.text <- c("P", "F1", "F2") legend("topleft", leg.text, lty=c(1, 1, 1), col=c(1, 2, 4), cex=3) if (opt$se_plot == 1) { # Add SE lines to plot # SE for adults lines (day.all, g0a+g0a.se, lty=2) lines (day.all, g0a-g0a.se, lty=2) # SE for nymphs lines (day.all, g1a+g1a.se, col=2, lty=2) lines (day.all, g1a-g1a.se, col=2, lty=2) # SE for eggs lines (day.all, g2a+g2a.se, col=4, lty=2) lines (day.all, g2a-g2a.se, col=4, lty=2) } # Turn off device driver to flush output. dev.off()