Mercurial > repos > greg > insect_phenology_model
view insect_phenology_model.R @ 6:fe3f86012394 draft
Uploaded
author | greg |
---|---|
date | Wed, 06 Dec 2017 10:07:21 -0500 |
parents | 1878a03f9c9f |
children | 37f1ad91a949 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) option_list <- list( make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), make_option(c("--input"), action="store", dest="input", help="Temperature data for selected location"), make_option(c("--insect"), action="store", dest="insect", help="Insect name"), make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), make_option(c("--location"), action="store", dest="location", help="Selected location"), make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), make_option(c("--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"), make_option(c("--output"), action="store", dest="output", help="Output dataset"), make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), make_option(c("--std_error_plot"), action="store", dest="std_error_plot", help="Plot Standard error"), make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options add_daylight_length = function(temperature_data_frame, num_columns, num_rows) { # Return a vector of daylight length (photoperido profile) for # the number of days specified in the input temperature data # (from Forsythe 1995). p = 0.8333 latitude <- temperature_data_frame$LATITUDE[1] daylight_length_vector <- NULL for (i in 1:num_rows) { # Get the day of the year from the current row # of the temperature data for computation. doy <- temperature_data_frame$DOY[i] theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))) phi <- asin(0.39795 * cos(theta)) # Compute the length of daylight for the day of the year. darkness_length <- 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))) daylight_length_vector[i] <- 24 - darkness_length } # Append daylight_length_vector as a new column to temperature_data_frame. temperature_data_frame[, num_columns+1] <- daylight_length_vector return(temperature_data_frame) } dev.egg = function(temperature) { dev.rate = -0.9843 * temperature + 33.438 return(dev.rate) } dev.emerg = function(temperature) { emerg.rate <- -0.5332 * temperature + 24.147 return(emerg.rate) } dev.old = function(temperature) { n34 <- -0.6119 * temperature + 17.602 n45 <- -0.4408 * temperature + 19.036 dev.rate = mean(n34 + n45) return(dev.rate) } dev.young = function(temperature) { n12 <- -0.3728 * temperature + 14.68 n23 <- -0.6119 * temperature + 25.249 dev.rate = mean(n12 + n23) return(dev.rate) } get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { # Base development threshold for Brown Marmolated Stink Bug # insect phenology model. threshold <- 14.17 # Minimum temperature for current row. curr_min_temp <- temperature_data_frame$TMIN[row] # Maximum temperature for current row. curr_max_temp <- temperature_data_frame$TMAX[row] # Mean temperature for current row. curr_mean_temp <- 0.5 * (curr_min_temp + curr_max_temp) # Initialize degree day accumulation averages <- 0 if (curr_max_temp < threshold) { averages <- 0 } else { # Initialize hourly temperature. T <- NULL # Initialize degree hour vector. dh <- NULL # Daylight length for current row. y <- temperature_data_frame$DAYLEN[row] # Darkness length. z <- 24 - y # Lag coefficient. a <- 1.86 # Darkness coefficient. b <- 2.20 # Sunrise time. risetime <- 12 - y / 2 # Sunset time. settime <- 12 + y / 2 ts <- (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp for (i in 1:24) { if (i > risetime && i < settime) { # Number of hours after Tmin until sunset. m <- i - 5 T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else if (i > settime) { n <- i - settime T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } else { n <- i + 24 - settime T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z) if (T[i] < 8.4) { dh[i] <- 0 } else { dh[i] <- T[i] - 8.4 } } } averages <- sum(dh) / 24 } return(c(curr_mean_temp, averages)) } mortality.adult = function(temperature) { if (temperature < 12.7) { mortality.probability = 0.002 } else { mortality.probability = temperature * 0.0005 + 0.02 } return(mortality.probability) } mortality.egg = function(temperature) { if (temperature < 12.7) { mortality.probability = 0.8 } else { mortality.probability = 0.8 - temperature / 40.0 if (mortality.probability < 0) { mortality.probability = 0.01 } } return(mortality.probability) } mortality.nymph = function(temperature) { if (temperature < 12.7) { mortality.probability = 0.03 } else { mortality.probability = temperature * 0.0008 + 0.03 } return(mortality.probability) } parse_input_data = function(input_file, num_rows) { # Read in the input temperature datafile into a data frame. temperature_data_frame <- read.csv(file=input_file, header=T, strip.white=TRUE, sep=",") num_columns <- dim(temperature_data_frame)[2] if (num_columns == 6) { # The input data has the following 6 columns: # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX # Set the column names for access when adding daylight length.. colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX") # Add a column containing the daylight length for each day. temperature_data_frame <- add_daylight_length(temperature_data_frame, num_columns, num_rows) # Reset the column names with the additional column for later access. colnames(temperature_data_frame) <- c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX", "DAYLEN") } return(temperature_data_frame) } render_chart = function(chart_type, insect, location, latitude, start_date, end_date, days, maxval, plot_std_error, group1, group2, group3, group1_std_error, group2_std_error, group3_std_error) { if (chart_type == "pop_size_by_life_stage") { title <- paste(insect, ": Total pop. by life stage :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") legend_text <- c("Egg", "Nymph", "Adult") columns <- c(4, 2, 1) } else if (chart_type == "pop_size_by_generation") { title <- paste(insect, ": Total pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") legend_text <- c("P", "F1", "F2") columns <- c(1, 2, 4) } else if (chart_type == "adult_pop_size_by_generation") { title <- paste(insect, ": Adult pop. by generation :", location, ": Lat:", latitude, ":", start_date, "-", end_date, sep=" ") legend_text <- c("P", "F1", "F2") columns <- c(1, 2, 4) } plot(days, group1, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3) legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3) lines(days, group2, lwd=2, lty=1, col=2) lines(days, group3, lwd=2, lty=1, col=4) axis(1, at=c(1:12) * 30 - 15, cex.axis=3, labels=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) axis(2, cex.axis=3) if (plot_std_error==1) { # Standard error for group1. lines(days, group1+group1_std_error, lty=2) lines (days, group1-group1_std_error, lty=2) # Standard error for group2. lines(days, group2+group2_std_error, col=2, lty=2) lines(days, group2-group2_std_error, col=2, lty=2) # Standard error for group3. lines(days, group3+group3_std_error, col=4, lty=2) lines(days, group3-group3_std_error, col=4, lty=2) } } temperature_data_frame <- parse_input_data(opt$input, opt$num_days) # All latitude values are the same, so get the value from the first row. latitude <- temperature_data_frame$LATITUDE[1] # Initialize matrices. Eggs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) YoungNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) OldNymphs.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) Previtellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) Vitellogenic.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) Diapausing.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) newborn.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) adult.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) death.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) P.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) P_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) F1.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) F1_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) F2.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) F2_adults.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) population.replications <- matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications) # Process replications. for (N.replications in 1:opt$replications) { # Start with the user-defined number of insects per replication. num_insects <- opt$insects_per_replication # Generation, Stage, degree-days, T, Diapause. vector.ini <- c(0, 3, 0, 0, 0) # Overwintering, previttelogenic, degree-days=0, T=0, no-diapause. vector.matrix <- rep(vector.ini, num_insects) # Complete matrix for the population. vector.matrix <- base::t(matrix(vector.matrix, nrow=5)) # Time series of population size. Eggs <- rep(0, opt$num_days) YoungNymphs <- rep(0, opt$num_days) OldNymphs <- rep(0, opt$num_days) Previtellogenic <- rep(0, opt$num_days) Vitellogenic <- rep(0, opt$num_days) Diapausing <- rep(0, opt$num_days) N.newborn <- rep(0, opt$num_days) N.adult <- rep(0, opt$num_days) N.death <- rep(0, opt$num_days) overwintering_adult.population <- rep(0, opt$num_days) first_generation.population <- rep(0, opt$num_days) second_generation.population <- rep(0, opt$num_days) P.adult <- rep(0, opt$num_days) F1.adult <- rep(0, opt$num_days) F2.adult <- rep(0, opt$num_days) total.population <- NULL averages.day <- rep(0, opt$num_days) # All the days included in the input temperature dataset. for (row in 1:opt$num_days) { # Get the integer day of the year for the current row. doy <- temperature_data_frame$DOY[row] # Photoperiod in the day. photoperiod <- temperature_data_frame$DAYLEN[row] temp.profile <- get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days) mean.temp <- temp.profile[1] averages.temp <- temp.profile[2] averages.day[row] <- averages.temp # Trash bin for death. death.vector <- NULL # Newborn. birth.vector <- NULL # All individuals. for (i in 1:num_insects) { # Individual record. vector.individual <- vector.matrix[i,] # Adjustment for late season mortality rate (still alive?). if (latitude < 40.0) { post.mortality <- 1 day.kill <- 300 } else { post.mortality <- 2 day.kill <- 250 } if (vector.individual[2] == 0) { # Egg. death.probability = opt$egg_mortality * mortality.egg(mean.temp) } else if (vector.individual[2] == 1 | vector.individual[2] == 2) { death.probability = opt$nymph_mortality * mortality.nymph(mean.temp) } else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { # Adult. if (doy < day.kill) { death.probability = opt$adult_mortality * mortality.adult(mean.temp) } else { # Increase adult mortality after fall equinox. death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp) } } # Dependent on temperature and life stage? u.d <- runif(1) if (u.d < death.probability) { death.vector <- c(death.vector, i) } else { # End of diapause. if (vector.individual[1] == 0 && vector.individual[2] == 3) { # Overwintering adult (previttelogenic). if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.individual <- c(0, 4, 0, 0, 0) vector.matrix[i,] <- vector.individual } else { # Add to # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 vector.matrix[i,] <- vector.individual } } if (vector.individual[1] != 0 && vector.individual[2] == 3) { # Not overwintering adult (previttelogenic). current.gen <- vector.individual[1] if (vector.individual[3] > 68) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.individual <- c(current.gen, 4, 0, 0, 0) vector.matrix[i,] <- vector.individual } else { # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 vector.matrix[i,] <- vector.individual } } # Oviposition -- where population dynamics comes from. if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) { # Vittelogenic stage, overwintering generation. if (vector.individual[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)) } } # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 vector.matrix[i,] <- vector.individual if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vector.individual[1] + 1 # Egg profile. new.individual <- c(new.gen, 0, 0, 0, 0) new.vector <- rep(new.individual, num_insects.birth) # Update batch of egg profile. new.vector <- t(matrix(new.vector, nrow=5)) # Group with total eggs laid in that day. birth.vector <- rbind(birth.vector, new.vector) } } # Oviposition -- for generation 1. if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) { # Vittelogenic stage, 1st generation if (vector.individual[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size)) } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01 u1 <- runif(1) if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)) } } # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 vector.matrix[i,] <- vector.individual if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen <- vector.individual[1] + 1 # Egg profile. new.individual <- c(new.gen, 0, 0, 0, 0) new.vector <- rep(new.individual, num_insects.birth) # Update batch of egg profile. new.vector <- t(matrix(new.vector, nrow=5)) # Group with total eggs laid in that day. birth.vector <- rbind(birth.vector, new.vector) } } # Egg to young nymph. if (vector.individual[2] == 0) { # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) { # From egg to young nymph, degree-days requirement met. current.gen <- vector.individual[1] # Transfer to young nymph stage. vector.individual <- c(current.gen, 1, 0, 0, 0) } else { # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 } vector.matrix[i,] <- vector.individual } # Young nymph to old nymph. if (vector.individual[2] == 1) { # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) { # From young to old nymph, degree_days requirement met. current.gen <- vector.individual[1] # Transfer to old nym stage. vector.individual <- c(current.gen, 2, 0, 0, 0) if (photoperiod < opt$photoperiod && doy > 180) { vector.individual[5] <- 1 } # Prepare for diapausing. } else { # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 } vector.matrix[i,] <- vector.individual } # Old nymph to adult: previttelogenic or diapausing? if (vector.individual[2] == 2) { # Add average temperature for current day. vector.individual[3] <- vector.individual[3] + averages.temp if (vector.individual[3] >= (200+opt$adult_accumulation)) { # From old to adult, degree_days requirement met. current.gen <- vector.individual[1] if (vector.individual[5] == 0) { # Previttelogenic. vector.individual <- c(current.gen, 3, 0, 0, 0) } else { # Diapausing. vector.individual <- c(current.gen, 5, 0, 0, 1) } } else { # Add 1 day in current stage. vector.individual[4] <- vector.individual[4] + 1 } vector.matrix[i,] <- vector.individual } # Growing of diapausing adult (unimportant, but still necessary). if (vector.individual[2] == 5) { vector.individual[3] <- vector.individual[3] + averages.temp vector.individual[4] <- vector.individual[4] + 1 vector.matrix[i,] <- vector.individual } } # Else if it is still alive. } # End of the individual bug loop. # Number of deaths. num_insects.death <- length(death.vector) if (num_insects.death > 0) { # Remove record of dead. vector.matrix <- vector.matrix[-death.vector, ] } # Number of births. num_insects.newborn <- length(birth.vector[,1]) vector.matrix <- rbind(vector.matrix, birth.vector) # Update population size for the next day. num_insects <- num_insects - num_insects.death + num_insects.newborn # Aggregate results by day. # Egg population size. Eggs[row] <- sum(vector.matrix[,2]==0) # Young nymph population size. YoungNymphs[row] <- sum(vector.matrix[,2]==1) # Old nymph population size. OldNymphs[row] <- sum(vector.matrix[,2]==2) # Previtellogenic population size. Previtellogenic[row] <- sum(vector.matrix[,2]==3) # Vitellogenic population size. Vitellogenic[row] <- sum(vector.matrix[,2]==4) # Diapausing population size. Diapausing[row] <- sum(vector.matrix[,2]==5) # Newborn population size. N.newborn[row] <- num_insects.newborn # Adult population size. N.adult[row] <- sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5) # Dead population size. N.death[row] <- num_insects.death total.population <- c(total.population, num_insects) # Overwintering adult population size. overwintering_adult.population[row] <- sum(vector.matrix[,1]==0) # First generation population size. first_generation.population[row] <- sum(vector.matrix[,1]==1) # Second generation population size. second_generation.population[row] <- sum(vector.matrix[,1]==2) # P adult population size. P.adult[row] <- sum(vector.matrix[,1]==0) # F1 adult population size. F1.adult[row] <- sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)) # F2 adult population size F2.adult[row] <- sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)) } # End of days specified in the input temperature data. averages.cum <- cumsum(averages.day) # Define the output values. Eggs.replications[,N.replications] <- Eggs YoungNymphs.replications[,N.replications] <- YoungNymphs OldNymphs.replications[,N.replications] <- OldNymphs Previtellogenic.replications[,N.replications] <- Previtellogenic Vitellogenic.replications[,N.replications] <- Vitellogenic Diapausing.replications[,N.replications] <- Diapausing newborn.replications[,N.replications] <- N.newborn adult.replications[,N.replications] <- N.adult death.replications[,N.replications] <- N.death P.replications[,N.replications] <- overwintering_adult.population P_adults.replications[,N.replications] <- P.adult F1.replications[,N.replications] <- first_generation.population F1_adults.replications[,N.replications] <- F1.adult F2.replications[,N.replications] <- second_generation.population F2_adults.replications[,N.replications] <- F2.adult population.replications[,N.replications] <- total.population } # Mean value for eggs. eggs <- apply(Eggs.replications, 1, mean) # Standard error for eggs. eggs.std_error <- apply(Eggs.replications, 1, sd) / sqrt(opt$replications) # Mean value for nymphs. nymphs <- apply((YoungNymphs.replications+OldNymphs.replications), 1, mean) # Standard error for nymphs. nymphs.std_error <- apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd) # Mean value for adults. adults <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, mean) # Standard error for adults. adults.std_error <- apply((Previtellogenic.replications+Vitellogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications) # Mean value for P. P <- apply(P.replications, 1, mean) # Standard error for P. P.std_error <- apply(P.replications, 1, sd) / sqrt(opt$replications) # Mean value for P adults. P_adults <- apply(P_adults.replications, 1, mean) # Standard error for P_adult. P_adults.std_error <- apply(P_adults.replications, 1, sd) / sqrt(opt$replications) # Mean value for F1. F1 <- apply(F1.replications, 1, mean) # Standard error for F1. F1.std_error <- apply(F1.replications, 1, sd) / sqrt(opt$replications) # Mean value for F1 adults. F1_adults <- apply(F1_adults.replications, 1, mean) # Standard error for F1 adult. F1_adults.std_error <- apply(F1_adults.replications, 1, sd) / sqrt(opt$replications) # Mean value for F2. F2 <- apply(F2.replications, 1, mean) # Standard error for F2. F2.std_error <- apply(F2.replications, 1, sd) / sqrt(opt$replications) # Mean value for F2 adults. F2_adults <- apply(F2_adults.replications, 1, mean) # Standard error for F2 adult. F2_adults.std_error <- apply(F2_adults.replications, 1, sd) / sqrt(opt$replications) # Display the total number of days in the Galaxy history item blurb. cat("Number of days: ", opt$num_days, "\n") dev.new(width=20, height=30) # Start PDF device driver to save charts to output. pdf(file=opt$output, width=20, height=30, bg="white") par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)) # Data analysis and visualization plots only within a single calendar year. days <- c(1:opt$num_days) start_date <- temperature_data_frame$DATE[1] end_date <- temperature_data_frame$DATE[opt$num_days] # Subfigure 1: population size by life stage. maxval <- max(eggs+eggs.std_error, nymphs+nymphs.std_error, adults+adults.std_error) render_chart("pop_size_by_life_stage", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, opt$std_error_plot, adults, nymphs, eggs, adults.std_error, nymphs.std_error, eggs.std_error) # Subfigure 2: population size by generation. maxval <- max(F2) render_chart("pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, opt$std_error_plot, P, F1, F2, P.std_error, F1.std_error, F2.std_error) # Subfigure 3: adult population size by generation. maxval <- max(F2_adults) + 100 render_chart("adult_pop_size_by_generation", opt$insect, opt$location, latitude, start_date, end_date, days, maxval, opt$std_error_plot, P_adults, F1_adults, F2_adults, P_adults.std_error, F1_adults.std_error, F2_adults.std_error) # Turn off device driver to flush output. dev.off()