Mercurial > repos > greg > pima_report
view pima_report.py @ 4:428aed51c487 draft
Uploaded
author | greg |
---|---|
date | Thu, 09 Mar 2023 16:52:14 +0000 |
parents | 9cb62054a87a |
children | b13d4c14caaa |
line wrap: on
line source
import argparse import os import pandas import pypandoc import re import subprocess import sys from Bio import SeqIO from datetime import date from mdutils.mdutils import MdUtils CDC_ADVISORY = 'The analysis and report presented here should be treated as preliminary. Please contact the CDC/BDRD with any results regarding _Bacillus anthracis_.' class PimaReport: def __init__(self, analysis_name=None, amr_deletions_file=None, amr_matrix_files=None, assembly_fasta_file=None, assembly_name=None, blastn_version=None, compute_sequence_length_file=None, contig_coverage_file=None, dbkey=None, dnadiff_snps_file=None, dnadiff_version=None, feature_bed_files=None, feature_png_files=None, flye_assembly_info_file=None, flye_version=None, genome_insertions_file=None, gzipped=None, illumina_fastq_file=None, kraken2_report_file=None, kraken2_version=None, mutation_regions_bed_file=None, mutation_regions_tsv_files=None, pima_css=None, plasmids_file=None, reference_insertions_file=None): self.ofh = open("process_log.txt", "w") self.ofh.write("amr_deletions_file: %s\n" % str(amr_deletions_file)) self.ofh.write("amr_matrix_files: %s\n" % str(amr_matrix_files)) self.ofh.write("analysis_name: %s\n" % str(analysis_name)) self.ofh.write("assembly_fasta_file: %s\n" % str(assembly_fasta_file)) self.ofh.write("assembly_name: %s\n" % str(assembly_name)) self.ofh.write("blastn_version: %s\n" % str(blastn_version)) self.ofh.write("compute_sequence_length_file: %s\n" % str(compute_sequence_length_file)) self.ofh.write("contig_coverage_file: %s\n" % str(contig_coverage_file)) self.ofh.write("dbkey: %s\n" % str(dbkey)) self.ofh.write("dnadiff_snps_file: %s\n" % str(dnadiff_snps_file)) self.ofh.write("dnadiff_version: %s\n" % str(dnadiff_version)) self.ofh.write("feature_bed_files: %s\n" % str(feature_bed_files)) self.ofh.write("feature_png_files: %s\n" % str(feature_png_files)) self.ofh.write("flye_assembly_info_file: %s\n" % str(flye_assembly_info_file)) self.ofh.write("flye_version: %s\n" % str(flye_version)) self.ofh.write("gzipped: %s\n" % str(gzipped)) self.ofh.write("genome_insertions_file: %s\n" % str(genome_insertions_file)) self.ofh.write("illumina_fastq_file: %s\n" % str(illumina_fastq_file)) self.ofh.write("kraken2_report_file: %s\n" % str(kraken2_report_file)) self.ofh.write("kraken2_version: %s\n" % str(kraken2_version)) self.ofh.write("mutation_regions_bed_file: %s\n" % str(mutation_regions_bed_file)) self.ofh.write("mutation_regions_tsv_files: %s\n" % str(mutation_regions_tsv_files)) self.ofh.write("pima_css: %s\n" % str(pima_css)) self.ofh.write("plasmids_file: %s\n" % str(plasmids_file)) # self.ofh.write("reference_genome: %s\n" % str(reference_genome)) self.ofh.write("reference_insertions_file: %s\n" % str(reference_insertions_file)) # General self.doc = None self.report_md = 'pima_report.md' # Inputs self.amr_deletions_file = amr_deletions_file self.amr_matrix_files = amr_matrix_files self.analysis_name = analysis_name self.assembly_fasta_file = assembly_fasta_file self.assembly_name = assembly_name self.blastn_version = blastn_version self.compute_sequence_length_file = compute_sequence_length_file self.contig_coverage_file = contig_coverage_file self.dbkey = dbkey self.dnadiff_snps_file = dnadiff_snps_file self.dnadiff_version = dnadiff_version self.feature_bed_files = feature_bed_files self.feature_png_files = feature_png_files self.flye_assembly_info_file = flye_assembly_info_file self.flye_version = flye_version self.gzipped = gzipped self.genome_insertions_file = genome_insertions_file self.illumina_fastq_file = illumina_fastq_file self.kraken2_report_file = kraken2_report_file self.kraken2_version = kraken2_version self.mutation_regions_bed_file = mutation_regions_bed_file self.mutation_regions_tsv_files = mutation_regions_tsv_files self.read_type = 'Illumina' self.ont_bases = None self.ont_n50 = None self.ont_read_count = None self.pima_css = pima_css self.plasmids_file = plasmids_file # self.reference_genome = reference_genome self.reference_insertions_file = reference_insertions_file # Titles self.alignment_title = 'Comparison with reference' self.alignment_notes_title = 'Alignment notes' self.amr_matrix_title = 'AMR matrix' self.assembly_methods_title = 'Assembly' self.assembly_notes_title = 'Assembly notes' self.basecalling_title = 'Basecalling' self.basecalling_methods_title = 'Basecalling' self.contamination_methods_title = 'Contamination check' self.contig_alignment_title = 'Alignment vs. reference contigs' self.feature_title = 'Features found in the assembly' self.feature_methods_title = 'Feature annotation' self.feature_plot_title = 'Feature annotation plots' self.large_indel_title = 'Large insertions & deletions' self.methods_title = 'Methods' self.mutation_title = 'Mutations found in the sample' self.mutation_methods_title = 'Mutation screening' self.plasmid_methods_title = 'Plasmid annotation' self.plasmid_title = 'Plasmid annotation' self.reference_methods_title = 'Reference comparison' self.snp_indel_title = 'SNPs and small indels' self.summary_title = 'Analysis of %s' % analysis_name # Contamination self.kraken_fracs = pandas.Series(dtype=object) # Methods self.methods = pandas.Series(dtype='float64') self.methods[self.contamination_methods_title] = pandas.Series(dtype='float64') self.methods[self.assembly_methods_title] = pandas.Series(dtype='float64') self.methods[self.reference_methods_title] = pandas.Series(dtype='float64') self.methods[self.mutation_methods_title] = pandas.Series(dtype='float64') self.methods[self.feature_methods_title] = pandas.Series(dtype='float64') self.methods[self.plasmid_methods_title] = pandas.Series(dtype='float64') # Notes self.assembly_notes = pandas.Series(dtype=object) self.alignment_notes = pandas.Series(dtype=object) self.contig_alignment = pandas.Series(dtype=object) # Values self.assembly_size = 0 self.contig_info = None self.did_medaka_ont_assembly = False self.feature_hits = pandas.Series(dtype='float64') self.illumina_length_mean = 0 self.illumina_read_count = 0 self.illumina_bases = 0 self.mean_coverage = 0 self.num_assembly_contigs = 0 # TODO: should the following 2 values be passed as parameters? self.ont_n50_min = 2500 self.ont_coverage_min = 30 self.quast_indels = 0 self.quast_mismatches = 0 # Actions self.did_guppy_ont_fast5 = False self.did_qcat_ont_fastq = False self.info_illumina_fastq() self.load_contig_info() def run_command(self, command): self.ofh.write("\nXXXXXX In run_command, command:\n%s\n\n" % str(command)) try: return re.split('\\n', subprocess.check_output(command, shell=True).decode('utf-8')) except Exception: message = 'Command %s failed: exiting...' % command sys.exit(message) def format_kmg(self, number, decimals=0): self.ofh.write("\nXXXXXX In format_kmg, number:\n%s\n" % str(number)) self.ofh.write("XXXXXX In format_kmg, decimals:\n%s\n\n" % str(decimals)) if number == 0: return '0' magnitude_powers = [10**9, 10**6, 10**3, 1] magnitude_units = ['G', 'M', 'K', ''] for i in range(len(magnitude_units)): if number >= magnitude_powers[i]: magnitude_power = magnitude_powers[i] magnitude_unit = magnitude_units[i] return ('{:0.' + str(decimals) + 'f}').format(number / magnitude_power) + magnitude_unit def load_contig_info(self): self.contig_info = pandas.Series(dtype=object) self.contig_info[self.read_type] = pandas.read_csv(self.contig_coverage_file, header=None, index_col=None, sep='\t').sort_values(1, axis=0, ascending=False) self.contig_info[self.read_type].columns = ['contig', 'size', 'coverage'] self.mean_coverage = (self.contig_info[self.read_type].iloc[:, 1] * self.contig_info[self.read_type].iloc[:, 2]).sum() / self.contig_info[self.read_type].iloc[:, 1].sum() if self.mean_coverage <= self.ont_coverage_min: warning = '%s mean coverage ({:.0f}X) is less than the recommended minimum ({:.0f}X).'.format(self.mean_coverage, self.ont_coverage_min) % self.read_type self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) # Report if some contigs have low coverage. low_coverage = self.contig_info[self.read_type].loc[self.contig_info[self.read_type]['coverage'] < self.ont_coverage_min, :] if low_coverage.shape[0] >= 0: for contig_i in range(low_coverage.shape[0]): warning = '%s coverage of {:s} ({:.0f}X) is less than the recommended minimum ({:.0f}X).'.format(low_coverage.iloc[contig_i, 0], low_coverage.iloc[contig_i, 2], self.ont_coverage_min) % self.read_type self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) # See if some contigs have anolously low coverage. fold_coverage = self.contig_info[self.read_type]['coverage'] / self.mean_coverage low_coverage = self.contig_info[self.read_type].loc[fold_coverage < 1 / 5, :] if low_coverage.shape[0] >= 0 : for contig_i in range(low_coverage.shape[0]): warning = '%s coverage of {:s} ({:.0f}X) is less than 1/5 the mean coverage ({:.0f}X).'.format(low_coverage.iloc[contig_i, 0], low_coverage.iloc[contig_i, 2], self.mean_coverage) % self.read_type self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) def load_fasta(self, fasta): sequence = pandas.Series(dtype=object) for contig in SeqIO.parse(fasta, 'fasta'): sequence[contig.id] = contig return sequence def load_assembly(self): self.assembly = self.load_fasta(self.assembly_fasta_file) self.num_assembly_contigs = len(self.assembly) for i in self.assembly: self.assembly_size += len(i.seq) self.assembly_size = self.format_kmg(self.assembly_size, decimals=1) def info_illumina_fastq(self): self.ofh.write("\nXXXXXX In info_illumina_fastq\n\n") if self.gzipped: opener = 'gunzip -c' else: opener = 'cat' command = ' '.join([opener, self.illumina_fastq_file, '| awk \'{getline;s += length($1);getline;getline;}END{print s/(NR/4)"\t"(NR/4)"\t"s}\'']) output = self.run_command(command) self.ofh.write("output:\n%s\n" % str(output)) self.ofh.write("re.split('\\t', self.run_command(command)[0]:\n%s\n" % str(re.split('\\t', self.run_command(command)[0]))) values = [] for i in re.split('\\t', self.run_command(command)[0]): if i == '': values.append(float('nan')) else: values.append(float(i)) self.ofh.write("values:\n%s\n" % str(values)) self.ofh.write("values[0]:\n%s\n" % str(values[0])) self.illumina_length_mean += values[0] self.ofh.write("values[1]:\n%s\n" % str(values[1])) self.illumina_read_count += int(values[1]) self.ofh.write("values[2]:\n%s\n" % str(values[2])) self.illumina_bases += int(values[2]) # The original PIMA code inserts self.illumina_fastq into # a list for no apparent reason. We don't do that here. # self.illumina_length_mean /= len(self.illumina_fastq) self.illumina_length_mean /= 1 self.illumina_bases = self.format_kmg(self.illumina_bases, decimals=1) def start_doc(self): self.doc = MdUtils(file_name=self.report_md, title='') def add_run_information(self): self.ofh.write("\nXXXXXX In add_run_information\n\n") self.doc.new_line() self.doc.new_header(1, 'Run information') # Tables in md.utils are implemented as a wrapping function. Table_list = [ "Category", "Information", "Date", date.today(), "ONT FAST5", "N/A", "ONT FASTQ", "N/A", "Illumina FASTQ", self.wordwrap_markdown(self.analysis_name), "Assembly", self.wordwrap_markdown(self.assembly_name), "Reference", self.wordwrap_markdown(self.dbkey), ] self.doc.new_table(columns=2, rows=7, text=Table_list, text_align='left') self.doc.new_line() self.doc.new_line() def add_ont_library_information(self): self.ofh.write("\nXXXXXX In add_ont_library_information\n\n") if self.ont_n50 is None: return self.doc.new_line() self.doc.new_header(2, 'ONT library statistics') Table_List = [ "Category", "Quantity", "ONT N50", '{:,}'.format(self.ont_n50), "ONT reads", '{:,}'.format(self.ont_read_count), "ONT bases", '{:s}'.format(self.ont_bases), "Illumina FASTQ", self.wordwrap_markdown(self.illumina_fastq_file), "Assembly", self.wordwrap_markdown(self.assembly_name), "Reference", self.wordwrap_markdown(self.dbkey), ] self.doc.new_table(columns=2, rows=7, text=Table_List, text_align='left') self.doc.new_line() def add_illumina_library_information(self): self.ofh.write("\nXXXXXX In add_illumina_library_information\n\n") if self.illumina_length_mean is None: return self.doc.new_line() self.doc.new_header(2, 'Illumina library statistics') Table_List = [ "Illumina Info.", "Quantity", 'Illumina mean length', '{:.1f}'.format(self.illumina_length_mean), 'Illumina reads', '{:,}'.format(self.illumina_read_count), 'Illumina bases', '{:s}'.format(self.illumina_bases) ] self.doc.new_table(columns=2, rows=4, text=Table_List, text_align='left') def evaluate_assembly(self) : assembly_info = pandas.read_csv(self.compute_sequence_length_file, sep='\t', header=None) assembly_info.columns = ['contig', 'length'] self.contig_sizes = assembly_info # Take a look at the number of contigs, their sizes, # and circularity. Warn if things don't look good. if assembly_info.shape[0] > 4: warning = 'Assembly produced {:d} contigs, more than ususally expected; assembly may be fragmented'.format(assembly_info.shape[0]) self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) small_contigs = assembly_info.loc[assembly_info['length'] <= 3000, :] if small_contigs.shape[0] > 0: warning = 'Assembly produced {:d} small contigs ({:s}); assembly may include spurious sequences.'.format(small_contigs.shape[0], ', '.join(small_contigs['contig'])) self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) def add_assembly_information(self): self.ofh.write("\nXXXXXX In add_assembly_information\n\n") if self.assembly_fasta_file is None: return self.load_assembly() self.doc.new_line() self.doc.new_header(2, 'Assembly statistics') Table_List = [ "Category", "Information", "Contigs", str(self.num_assembly_contigs), "Assembly size", str(self.assembly_size), ] self.doc.new_table(columns=2, rows=3, text=Table_List, text_align='left') def info_ont_fastq(self, fastq_file): self.ofh.write("\nXXXXXX In info_ont_fastq, fastq_file:\n%s\n\n" % str(fastq_file)) opener = 'cat' if self.gzipped: opener = 'gunzip -c' else: opener = 'cat' command = ' '.join([opener, fastq_file, '| awk \'{getline;print length($0);s += length($1);getline;getline;}END{print "+"s}\'', '| sort -gr', '| awk \'BEGIN{bp = 0;f = 0}', '{if(NR == 1){sub(/+/, "", $1);s=$1}else{bp += $1;if(bp > s / 2 && f == 0){n50 = $1;f = 1}}}', 'END{printf "%d\\t%d\\t%d\\n", n50, (NR - 1), s;exit}\'']) result = list(re.split('\\t', self.run_command(command)[0])) if result[1] == '0': self.error_out('No ONT reads found') ont_n50, ont_read_count, ont_raw_bases = [int(i) for i in result] command = ' '.join([opener, fastq_file, '| awk \'{getline;print length($0);getline;getline;}\'']) result = self.run_command(command) result = list(filter(lambda x: x != '', result)) # TODO: the following are not yet used... # ont_read_lengths = [int(i) for i in result] # ont_bases = self.format_kmg(ont_raw_bases, decimals=1) if ont_n50 <= self.ont_n50_min: warning = 'ONT N50 (%s) is less than the recommended minimum (%s)' % (str(ont_n50), str(self.ont_n50_min)) self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) def wordwrap_markdown(self, string): if string: if len(string) < 35: return string else: if '/' in string: adjust = string.split('/') out = '' max = 35 for i in adjust: out = out + '/' + i if len(out) > max: out += '<br>' max += 35 return out else: out = [string[i:i + 35] for i in range(0, len(string), 50)] return '<br>'.join(out) else: return string def add_contig_info(self): self.ofh.write("\nXXXXXX In add_contig_info\n\n") if self.contig_info is None: return for method in ['ONT', 'Illumina']: if method not in self.contig_info.index: continue self.doc.new_line() self.doc.new_header(2, 'Assembly coverage by ' + method) Table_List = ["Contig", "Length (bp)", "Coverage (X)"] formatted = self.contig_info[method].copy() formatted.iloc[:, 1] = formatted.iloc[:, 1].apply(lambda x: '{:,}'.format(x)) for i in range(self.contig_info[method].shape[0]): Table_List = Table_List + formatted.iloc[i, :].values.tolist() row_count = int(len(Table_List) / 3) self.doc.new_table(columns=3, rows=row_count, text=Table_List, text_align='left') def add_assembly_notes(self): self.ofh.write("\nXXXXXX In add_assembly_notes\n\n") if len(self.assembly_notes) == 0: return self.doc.new_line() self.doc.new_line('<div style="page-break-after: always;"></div>') self.doc.new_line() self.doc.new_header(2, self.assembly_notes_title) for note in self.assembly_notes: self.doc.new_line(note) def add_contamination(self): self.ofh.write("\nXXXXXX In add_contamination\n\n") if self.kraken2_report_file is None: return # Read in the Kraken fractions and pull out the useful parts self.kraken_fracs = pandas.read_csv(self.kraken_report_file, delimiter='\t', header=None) self.kraken_fracs.index = self.kraken_fracs.iloc[:, 4].values self.kraken_fracs = self.kraken_fracs.loc[self.kraken_fracs.iloc[:, 3].str.match('[UG]1?'), :] self.kraken_fracs = self.kraken_fracs.loc[(self.kraken_fracs.iloc[:, 0] >= 1) | (self.kraken_fracs.iloc[:, 3] == 'U'), :] self.kraken_fracs = self.kraken_fracs.iloc[:, [0, 1, 3, 5]] self.kraken_fracs.columns = ['Fraction', 'Reads', 'Level', 'Taxa'] self.kraken_fracs['Fraction'] = (self.kraken_fracs['Fraction'] / 100).round(4) self.kraken_fracs.sort_values(by='Fraction', inplace=True, ascending=False) self.kraken_fracs['Taxa'] = self.kraken_fracs['Taxa'].str.lstrip() self.doc.new_line() self.doc.new_header(2, 'Contamination check') for kraken_fracs in self.kraken_fracs.iteritems(): self.doc.new_line(self.read_type + ' classifications') self.doc.new_line() Table_List = ["Percent of Reads", "Reads", "Level", "Label"] for index, row in kraken_fracs.iterrows(): Table_List = Table_List + row.tolist() row_count = int(len(Table_List) / 4) self.doc.new_table(columns=4, rows=row_count, text=Table_List, text_align='left') if self.contamination_methods_title not in self.methods: self.methods[self.contamination_methods_title] = '' method = 'Kraken2 version %s was used to assign the raw reads into taxa.' % self.kraken2_version self.methods[self.contamination_methods_title] = self.methods[self.contamination_methods_title].append(pandas.Series(method)) def add_alignment(self): self.ofh.write("\nXXXXXX In add_alignment\n\n") # TODO: implement the draw_circos function for this. if len(self.contig_alignment) > 0: alignments = self.contig_alignment else: return self.doc.new_line() self.doc.new_header(level=2, title=self.alignment_title) self.doc.new_line() self.doc.new_header(level=3, title=self.snp_indel_title) Table_1 = [ "Category", "Quantity", 'SNPs', '{:,}'.format(self.quast_mismatches), 'Small indels', '{:,}'.format(self.quast_indels) ] self.doc.new_table(columns=2, rows=3, text=Table_1, text_align='left') self.doc.new_line('<div style="page-break-after: always;"></div>') self.doc.new_line() if len(self.alignment_notes) > 0: self.doc.new_header(level=3, title=self.alignment_notes_title) for note in self.alignment_notes: self.doc.new_line(note) for contig in alignments.index.tolist(): contig_title = 'Alignment to %s' % contig image_png = alignments[contig] self.doc.new_line() self.doc.new_header(level=3, title=contig_title) self.doc.new_line(self.doc.new_inline_image(text='contig_title', path=os.path.abspath(image_png))) self.doc.new_line('<div style="page-break-after: always;"></div>') self.doc.new_line() method = 'The genome assembly was aligned against the reference sequencing using dnadiff version %s.' % self.dnadiff_version self.methods[self.reference_methods_title] = self.methods[self.reference_methods_title].append(pandas.Series(method)) def add_features(self): self.ofh.write("\nXXXXXX In add_features\n\n") if len(self.feature_bed_files) == 0: return for bbf in self.feature_bed_files: if os.path.getsize(bbf) > 0: best = pandas.read_csv(filepath_or_buffer=bbf, sep='\t', header=None) self.feature_hits[os.path.basename(bbf)] = best if len(self.feature_hits) == 0: return self.ofh.write("self.feature_hits: %s\n" % str(self.feature_hits)) self.doc.new_line() self.doc.new_header(level=2, title=self.feature_title) for feature_name in self.feature_hits.index.tolist(): self.ofh.write("feature_name: %s\n" % str(feature_name)) features = self.feature_hits[feature_name].copy() self.ofh.write("features: %s\n" % str(features)) if features.shape[0] == 0: continue features.iloc[:, 1] = features.iloc[:, 1].apply(lambda x: '{:,}'.format(x)) features.iloc[:, 2] = features.iloc[:, 2].apply(lambda x: '{:,}'.format(x)) self.doc.new_line() self.doc.new_header(level=3, title=feature_name) if (features.shape[0] == 0): continue for contig in pandas.unique(features.iloc[:, 0]): self.ofh.write("contig: %s\n" % str(contig)) self.doc.new_line(contig) contig_features = features.loc[(features.iloc[:, 0] == contig), :] self.ofh.write("contig_features: %s\n" % str(contig_features)) Table_List = ['Start', 'Stop', 'Feature', 'Identity (%)', 'Strand'] for i in range(contig_features.shape[0]): self.ofh.write("i: %s\n" % str(i)) feature = contig_features.iloc[i, :].copy(deep=True) self.ofh.write("feature: %s\n" % str(feature)) feature[4] = '{:.3f}'.format(feature[4]) self.ofh.write("feature[1:].values.tolist(): %s\n" % str(feature[1:].values.tolist())) Table_List = Table_List + feature[1:].values.tolist() self.ofh.write("Table_List: %s\n" % str(Table_List)) row_count = int(len(Table_List) / 5) self.ofh.write("row_count: %s\n" % str(row_count)) self.doc.new_line() self.ofh.write("Before new_table, len(Table_List):: %s\n" % str(len(Table_List))) self.doc.new_table(columns=5, rows=row_count, text=Table_List, text_align='left') if self.blastn_version is not None: blastn_version = 'The genome assembly was queried for features using blastn version %s.' % self.blastn_version bedtools_version = 'Feature hits were clustered using bedtools and the highest scoring hit for each cluster was reported.' method = '%s %s' % (blastn_version, bedtools_version) self.methods[self.feature_methods_title] = self.methods[self.feature_methods_title].append(pandas.Series(method)) def add_feature_plots(self): self.ofh.write("\nXXXXXX In add_feature_plots\n\n") if len(self.feature_png_files) == 0: return self.doc.new_line() self.doc.new_header(level=2, title='Feature Plots') self.doc.new_paragraph('Only contigs with features are shown') for feature_png_file in self.feature_png_files: self.doc.new_line(self.doc.new_inline_image(text='Analysis', path=os.path.abspath(feature_png_file))) def add_mutations(self): self.ofh.write("\nXXXXXX In add_mutations\n\n") if len(self.mutation_regions_tsv_files) == 0: return try : mutation_regions = pandas.read_csv(self.mutation_regions_bed_file, sep='\t', header=0, index_col=False) except Exception: # Likely an empty file. return # TODO: this is the only place where reference_genome is used, # so I'm commenting it out for now. We need to confirm if these # errors that require the reference genmoe being passed are necessary. # If so, we'll need to implement data tables in this tool. # Make sure that the positions in the BED file fall within # the chromosomes provided in the reference sequence. """ for mutation_region in range(mutation_regions.shape[0]): mutation_region = mutation_regions.iloc[mutation_region, :] if not (mutation_region[0] in self.reference_genome): self.ofh.write("\nMutation region: %s not found in reference genome.\n" % ' '.join(mutation_region.astype(str))) continue if not isinstance(mutation_region[1], int): self.ofh.write("\nNon-integer found in mutation region start (column 2): %s.\n" % str(mutation_region[1])) break elif not isinstance(mutation_region[2], int): self.ofh.write("\nNon-integer found in mutation region start (column 3): %s.\n" % str(mutation_region[2])) break if mutation_region[1] <= 0 or mutation_region[2] <= 0: self.ofh.write("\nMutation region %s starts before the reference sequence.\n" % ' '.join(mutation_region.astype(str))) if mutation_region[1] > len(self.reference_genome[mutation_region[0]].seq) or mutation_region[2] > len(self.reference_genome[mutation_region[0]].seq): self.ofh.write("\nMutation region %s ends after the reference sequence.\n" % ' '.join(mutation_region.astype(str))) """ amr_mutations = pandas.Series(dtype=object) for region_i in range(mutation_regions.shape[0]): region = mutation_regions.iloc[region_i, :] region_name = str(region['name']) self.ofh.write("Processing mutations for region %s\n" % region_name) region_mutations_tsv_name = '%s_mutations.tsv' % region_name if region_mutations_tsv_name not in self.mutation_regions_tsv_files: continue region_mutations_tsv = self.mutation_regions_tsv_files[region_mutations_tsv_name] try : region_mutations = pandas.read_csv(region_mutations_tsv, sep='\t', header=0, index_col=False) except Exception: region_mutations = pandas.DataFrame() if region_mutations.shape[0] == 0: continue # Figure out what kind of mutations are in this region. region_mutation_types = pandas.Series(['snp'] * region_mutations.shape[0], name='TYPE', index=region_mutations.index) region_mutation_types[region_mutations['REF'].str.len() != region_mutations['ALT'].str.len()] = 'small-indel' region_mutation_drugs = pandas.Series(region['drug'] * region_mutations.shape[0], name='DRUG', index=region_mutations.index) region_notes = pandas.Series(region['note'] * region_mutations.shape[0], name='NOTE', index=region_mutations.index) region_mutations = pandas.concat([region_mutations, region_mutation_types, region_mutation_drugs, region_notes], axis=1) region_mutations = region_mutations[['#CHROM', 'POS', 'TYPE', 'REF', 'ALT', 'DRUG', 'NOTE']] amr_mutations[region['name']] = region_mutations if (amr_mutations.shape[0] > 0): # Report the mutations. self.doc.new_line() self.doc.new_header(level=2, title=self.mutation_title) for region_name in amr_mutations.index.tolist(): region_mutations = amr_mutations[region_name].copy() self.doc.new_line() self.doc.new_header(level=3, title=region_name) if (region_mutations.shape[0] == 0): self.doc.append('None') continue region_mutations.iloc[:, 1] = region_mutations.iloc[:, 1].apply(lambda x: '{:,}'.format(x)) Table_List = ['Reference contig', 'Position', 'Reference', 'Alternate', 'Drug', 'Note'] for i in range(region_mutations.shape[0]): Table_List = Table_List + region_mutations.iloc[i, [0, 1, 3, 4, 5, 6]].values.tolist() row_count = int(len(Table_List) / 6) self.doc.new_table(columns=6, rows=row_count, text=Table_List, text_align='left') method = '%s reads were mapped to the reference sequence using minimap2.' % self.read_type self.methods[self.mutation_methods_title] = self.methods[self.mutation_methods_title].append(pandas.Series(method)) method = 'Mutations were identified using samtools mpileup and varscan.' self.methods[self.mutation_methods_title] = self.methods[self.mutation_methods_title].append(pandas.Series(method)) def add_amr_matrix(self): self.ofh.write("\nXXXXXX In add_amr_matrix\n\n") # Make sure that we have an AMR matrix to plot if len(self.amr_matrix_files) == 0: return self.doc.new_line() self.doc.new_header(level=2, title=self.amr_matrix_title) self.doc.new_line('AMR genes and mutations with their corresponding drugs') for amr_matrix_file in self.amr_matrix_files: self.doc.new_line(self.doc.new_inline_image(text='AMR genes and mutations with their corresponding drugs', path=os.path.abspath(amr_matrix_file))) def add_large_indels(self): self.ofh.write("\nXXXXXX In add_large_indels\n\n") large_indels = pandas.Series(dtype='float64') # Pull in insertions. try: reference_insertions = pandas.read_csv(filepath_or_buffer=self.reference_insertions_file, sep='\t', header=None) except Exception: reference_insertions = pandas.DataFrame() try: genome_insertions = pandas.read_csv(filepath_or_buffer=self.genome_insertions_file, sep='\t', header=None) except Exception: genome_insertions = pandas.DataFrame() large_indels['Reference insertions'] = reference_insertions large_indels['Query insertions'] = genome_insertions # TODO: we don't seem to be reporting snps and deletions for some reason... # Pull in the number of SNPs and small indels. try: snps = pandas.read_csv(filepath_or_buffer=self.dnadiff_snps_file, sep='\t', header=None) # TODO: the following is not used... # small_indels = snps.loc[(snps.iloc[:, 1] == '.') | (snps.iloc[:, 2] == '.'), :] snps = snps.loc[(snps.iloc[:, 1] != '.') & (snps.iloc[:, 2] != '.'), :] except Exception: snps = pandas.DataFrame() # Pull in deletions. try: amr_deletions = pandas.read_csv(filepath_or_buffer=self.amr_deletion_file, sep='\t', header=None) except Exception: amr_deletions = pandas.DataFrame() if amr_deletions.shape[0] > 0: amr_deletions.columns = ['contig', 'start', 'stop', 'name', 'type', 'drug', 'note'] amr_deletions = amr_deletions.loc[amr_deletions['type'].isin(['large-deletion', 'any']), :] self.doc.new_line() self.doc.new_header(level=2, title=self.large_indel_title) for genome in ['Reference insertions', 'Query insertions']: genome_indels = large_indels[genome].copy() self.doc.new_line() self.doc.new_header(level=3, title=genome) if (genome_indels.shape[0] == 0): continue genome_indels.iloc[:, 1] = genome_indels.iloc[:, 1].apply(lambda x: '{:,}'.format(x)) genome_indels.iloc[:, 2] = genome_indels.iloc[:, 2].apply(lambda x: '{:,}'.format(x)) genome_indels.iloc[:, 3] = genome_indels.iloc[:, 3].apply(lambda x: '{:,}'.format(x)) Table_List = [ 'Reference contig', 'Start', 'Stop', 'Size (bp)' ] for i in range(genome_indels.shape[0]): Table_List = Table_List + genome_indels.iloc[i, :].values.tolist() row_count = int(len(Table_List) / 4) self.doc.new_table(columns=4, rows=row_count, text=Table_List, text_align='left') method = 'Large insertions or deletions were found as the complement of aligned regions using bedtools.' self.methods[self.reference_methods_title] = self.methods[self.reference_methods_title].append(pandas.Series(method)) self.doc.new_line() self.doc.new_line('<div style="page-break-after: always;"></div>') self.doc.new_line() def add_plasmids(self): try : plasmids = pandas.read_csv(filepath_or_buffer=self.plasmids_file, sep='\t', header=0) except Exception: return plasmids = plasmids.copy() self.doc.new_line() self.doc.new_header(level=2, title=self.plasmid_title) if (plasmids.shape[0] == 0): self.doc.new_line('None') return plasmids.iloc[:, 3] = plasmids.iloc[:, 3].apply(lambda x: '{:,}'.format(x)) plasmids.iloc[:, 4] = plasmids.iloc[:, 4].apply(lambda x: '{:,}'.format(x)) plasmids.iloc[:, 5] = plasmids.iloc[:, 5].apply(lambda x: '{:,}'.format(x)) Table_List = ['Genome contig', 'Plasmid hit', 'Plasmid acc.', 'Contig size', 'Aliged', 'Plasmid size'] for i in range(plasmids.shape[0]): Table_List = Table_List + plasmids.iloc[i, 0:6].values.tolist() row_count = int(len(Table_List) / 6) self.doc.new_table(columns=6, rows=row_count, text=Table_List, text_align='left') method = 'The plasmid reference database was queried against the genome assembly using minimap2.' self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method)) method = 'The resulting BAM was converted to a PSL using a custom version of sam2psl.' self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method)) method = 'Plasmid-to-genome hits were resolved using the pChunks algorithm.' self.methods[self.plasmid_methods_title] = self.methods[self.plasmid_methods_title].append(pandas.Series(method)) def add_methods(self): self.ofh.write("\nXXXXXX In add_methods\n\n") self.doc.new_line('<div style="page-break-after: always;"></div>') self.doc.new_line() if len(self.methods) == 0: return self.doc.new_line() self.doc.new_header(level=2, title=self.methods_title) for methods_section in self.methods.index.tolist(): if self.methods[methods_section] is None or len(self.methods[methods_section]) == 0: continue self.doc.new_line() self.doc.new_header(level=3, title=methods_section) self.doc.new_paragraph(' '.join(self.methods[methods_section])) def add_summary(self): self.ofh.write("\nXXXXXX In add_summary\n\n") # Add summary title self.doc.new_header(level=1, title=self.summary_title) # First section of Summary self.doc.new_header(level=1, title='CDC Advisory') self.doc.new_paragraph(CDC_ADVISORY) self.doc.new_line() self.add_run_information() self.add_ont_library_information() methods = [] if self.did_guppy_ont_fast5: methods += ['ONT reads were basecalled using guppy'] if self.did_qcat_ont_fastq: methods += ['ONT reads were demultiplexed and trimmed using qcat'] self.methods[self.basecalling_methods_title] = pandas.Series(methods) self.add_illumina_library_information() self.add_contig_info() self.evaluate_assembly() self.add_assembly_information() if self.flye_assembly_info_file is not None: method = 'ONT reads were assembled using %s' % self.flye_version self.methods[self.assembly_methods_title] = self.methods[self.assembly_methods_title].append(pandas.Series(method)) # Pull in the assembly summary and look at the coverage. assembly_info = pandas.read_csv(self.flye_assembly_info_file, header=0, index_col=0, sep='\t') # Look for non-circular contigs. open_contigs = assembly_info.loc[assembly_info['circ.'] == 'N', :] if open_contigs.shape[0] > 0: open_contig_ids = open_contigs.index.values warning = 'Flye reported {:d} open contigs ({:s}); assembly may be incomplete.'.format(open_contigs.shape[0], ', '.join(open_contig_ids)) self.assembly_notes = self.assembly_notes.append(pandas.Series(warning)) if self.did_medaka_ont_assembly: method = 'the genome assembly was polished using ont reads and medaka.' self.methods[self.assembly_methods_title] = self.methods[self.assembly_methods_title].append(pandas.series(method)) self.info_ont_fastq(self.illumina_fastq_file) self.add_assembly_notes() def make_tex(self): self.doc.new_table_of_contents(table_title='detailed run information', depth=2, marker="tableofcontents") text = self.doc.file_data_text text = text.replace("##--[", "") text = text.replace("]--##", "") self.doc.file_data_text = text self.doc.create_md_file() def make_report(self): self.ofh.write("\nXXXXXX In make_report\n\n") self.start_doc() self.add_summary() self.add_contamination() self.add_alignment() self.add_features() self.add_feature_plots() self.add_mutations() self.add_large_indels() self.add_plasmids() self.add_amr_matrix() # self.add_snps() self.add_methods() self.make_tex() # It took me quite a long time to find out that the value of the -t # (implied) argument in the following command must be 'html' instead of # the more logical 'pdf'. see the answer from snsn in this thread: # https://github.com/jessicategner/pypandoc/issues/186 self.ofh.write("\nXXXXX In make_report, calling pypandoc.convert_file...\n\n") pypandoc.convert_file(self.report_md, 'html', extra_args=['--pdf-engine=weasyprint', '-V', '-css=%s' % self.pima_css], outputfile='pima_report.pdf') self.ofh.close() parser = argparse.ArgumentParser() parser.add_argument('--amr_deletions_file', action='store', dest='amr_deletions_file', help='AMR deletions BED file') parser.add_argument('--amr_matrix_png_dir', action='store', dest='amr_matrix_png_dir', help='Directory of AMR matrix PNG files') parser.add_argument('--analysis_name', action='store', dest='analysis_name', help='Sample identifier') parser.add_argument('--assembly_fasta_file', action='store', dest='assembly_fasta_file', help='Assembly fasta file') parser.add_argument('--assembly_name', action='store', dest='assembly_name', help='Assembly identifier') parser.add_argument('--blastn_version', action='store', dest='blastn_version', default=None, help='Blastn version string') parser.add_argument('--compute_sequence_length_file', action='store', dest='compute_sequence_length_file', help='Comnpute sequence length tabular file') parser.add_argument('--contig_coverage_file', action='store', dest='contig_coverage_file', help='Contig coverage TSV file') parser.add_argument('--dbkey', action='store', dest='dbkey', help='Reference genome identifier') parser.add_argument('--dnadiff_snps_file', action='store', dest='dnadiff_snps_file', help='DNAdiff snps tabular file') parser.add_argument('--dnadiff_version', action='store', dest='dnadiff_version', help='DNAdiff version string') parser.add_argument('--feature_bed_dir', action='store', dest='feature_bed_dir', help='Directory of best feature hits bed files') parser.add_argument('--feature_png_dir', action='store', dest='feature_png_dir', help='Directory of best feature hits png files') parser.add_argument('--flye_assembly_info_file', action='store', dest='flye_assembly_info_file', default=None, help='Flye assembly info tabular file') parser.add_argument('--flye_version', action='store', dest='flye_version', default=None, help='Flye version string') parser.add_argument('--genome_insertions_file', action='store', dest='genome_insertions_file', help='Genome insertions BED file') parser.add_argument('--gzipped', action='store_true', dest='gzipped', default=False, help='Input sample is gzipped') parser.add_argument('--illumina_fastq_file', action='store', dest='illumina_fastq_file', help='Input sample') parser.add_argument('--kraken2_report_file', action='store', dest='kraken2_report_file', default=None, help='kraken2 report file') parser.add_argument('--kraken2_version', action='store', dest='kraken2_version', default=None, help='kraken2 version string') parser.add_argument('--mutation_regions_bed_file', action='store', dest='mutation_regions_bed_file', help='AMR mutation regions BRD file') parser.add_argument('--mutation_regions_dir', action='store', dest='mutation_regions_dir', help='Directory of mutation regions TSV files') parser.add_argument('--pima_css', action='store', dest='pima_css', help='PIMA css stypesheet') parser.add_argument('--plasmids_file', action='store', dest='plasmids_file', help='pChunks plasmids TSV file') parser.add_argument('--reference_insertions_file', action='store', dest='reference_insertions_file', help='Reference insertions BED file') # parser.add_argument('--reference_genome', action='store', dest='reference_genome', help='Reference genome fasta file') args = parser.parse_args() # Prepare the AMR matrix PNG files. amr_matrix_files = [] for file_name in sorted(os.listdir(args.amr_matrix_png_dir)): file_path = os.path.abspath(os.path.join(args.amr_matrix_png_dir, file_name)) amr_matrix_files.append(file_path) # Prepare the features BED files. feature_bed_files = [] for file_name in sorted(os.listdir(args.feature_bed_dir)): file_path = os.path.abspath(os.path.join(args.feature_bed_dir, file_name)) feature_bed_files.append(file_path) # Prepare the features PNG files. feature_png_files = [] for file_name in sorted(os.listdir(args.feature_png_dir)): file_path = os.path.abspath(os.path.join(args.feature_png_dir, file_name)) feature_png_files.append(file_path) # Prepare the mutation regions TSV files. mutation_regions_files = [] for file_name in sorted(os.listdir(args.mutation_regions_dir)): file_path = os.path.abspath(os.path.join(args.feature_png_dir, file_name)) mutation_regions_files.append(file_path) markdown_report = PimaReport(args.analysis_name, args.amr_deletions_file, amr_matrix_files, args.assembly_fasta_file, args.assembly_name, args.blastn_version, args.compute_sequence_length_file, args.contig_coverage_file, args.dbkey, args.dnadiff_snps_file, args.dnadiff_version, feature_bed_files, feature_png_files, args.flye_assembly_info_file, args.flye_version, args.genome_insertions_file, args.gzipped, args.illumina_fastq_file, args.kraken2_report_file, args.kraken2_version, args.mutation_regions_bed_file, mutation_regions_files, args.pima_css, args.plasmids_file, args.reference_insertions_file) markdown_report.make_report()