Mercurial > repos > greg > plant_tribes_ks_distribution
diff ks_distribution.R @ 0:c5846258c458 draft
Uploaded
author | greg |
---|---|
date | Thu, 08 Jun 2017 12:55:49 -0400 |
parents | |
children | 56f42cc1dd58 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ks_distribution.R Thu Jun 08 12:55:49 2017 -0400 @@ -0,0 +1,163 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) + +option_list <- list( + make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), + make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), + make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset") +) + +parser <- OptionParser(usage="%prog [options] file", option_list=option_list) +args <- parse_args(parser, positional_arguments=TRUE) +opt <- args$options + + +get_num_components = function(components_data) +{ + # Get the max of the number_comp column. + number_comp = components_data[, 3] + num_components <- max(number_comp, na.rm=TRUE) + return(num_components) +} + +get_pi_mu_var = function(components_data, num_components) +{ + # FixMe: enhance this to generically handle any integer value for num_components. + if (num_components == 1) + { + pi <- c(components_data[1, 9]) + mu <- c(components_data[1, 7]) + var <- c(components_data[1, 8]) + } + else if (num_components == 2) + { + pi <- c(components_data[2, 9], components_data[3, 9]) + mu <- c(components_data[2, 7], components_data[3, 7]) + var <- c(components_data[2, 8], components_data[3, 8]) + } + else if (num_components == 3) + { + pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]) + mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]) + var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]) + } + else if (num_components == 4) + { + pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]) + mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]) + var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]) + } + else if (num_components == 5) + { + pi <- c(components_data[11, 9], components_data[12, 9], components_data[13, 9], components_data[14, 9], components_data[15, 9]) + mu <- c(components_data[11, 7], components_data[12, 7], components_data[13, 7], components_data[14, 7], components_data[15, 7]) + var <- c(components_data[11, 8], components_data[12, 8], components_data[13, 8], components_data[14, 8], components_data[15, 8]) + } + else if (num_components == 6) + { + pi <- c(components_data[16, 9], components_data[17, 9], components_data[18, 9], components_data[19, 9], components_data[20, 9], components_data[21, 9]) + mu <- c(components_data[16, 7], components_data[17, 7], components_data[18, 7], components_data[19, 7], components_data[20, 7], components_data[21, 7]) + var <- c(components_data[16, 8], components_data[17, 8], components_data[18, 8], components_data[19, 8], components_data[20, 8], components_data[21, 8]) + } + results = c(pi, mu, var) + return(results) +} + +plot_ks<-function(kaks_input, output, pi, mu, var) +{ + # Start PDF device driver to save charts to output. + pdf(file=output, bg="white") + kaks <- read.table(file=kaks_input, header=T) + max_ks <- max(kaks$Ks, na.rm=TRUE) + # Change bin width + max_bin_range <- as.integer(max_ks / 0.05) + bin <- 0.05 * seq(0, (max_bin_range + 1 )) + kaks <- kaks[kaks$Ks<max_ks,] + h.kst <- hist(kaks$Ks, breaks=bin, plot=F) + nc <- h.kst$counts + vx <- h.kst$mids + ntot <- sum(nc) + # Set margin for plot bottom, left top, right. + par(mai=c(0.5, 0.5, 0, 0)) + # Plot dimension in inches. + par(pin=c(3.0, 3.0)) + g <- calculate_fitted_density(pi, mu, var, max_ks) + h <- ntot * 1.5 / sum(g) + vx <- seq(1, 100) * (max_ks / 100) + ymax <- max(nc) + barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3") + # Add x-axis. + axis(1) + color <- c('red', 'yellow','green','black','blue', 'darkorange' ) + for (i in 1:length(mu)) + { + lines(vx, g[,i] * h, lwd=2, col=color[i]) + } +} + +calculate_fitted_density <- function(pi, mu, var, max_ks) +{ + comp <- length(pi) + var <- var/mu^2 + mu <- log(mu) + # Calculate lognormal density. + vx <- seq(1, 100) * (max_ks / 100) + fx <- matrix(0, 100, comp) + for (i in 1:100) + { + for (j in 1:comp) + { + fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))) + if (is.nan(fx[i,j])) fx[i,j]<-0 + } + } + return(fx) +} + +# Read in the components data. +components_data <- read.delim(opt$components_input, header=TRUE) +# Get the number of components. +num_components <- get_num_components(components_data) + +# Set pi, mu, var. +items <- get_pi_mu_var(components_data, num_components) +if (num_components == 1) +{ + pi <- items[1] + mu <- items[2] + var <- items[3] +} +if (num_components == 2) +{ + pi <- items[1:2] + mu <- items[3:4] + var <- items[5:6] +} +if (num_components == 3) +{ + pi <- items[1:3] + mu <- items[4:6] + var <- items[7:9] +} +if (num_components == 4) +{ + pi <- items[1:4] + mu <- items[5:8] + var <- items[9:12] +} +if (num_components == 5) +{ + pi <- items[1:5] + mu <- items[6:10] + var <- items[11:15] +} +if (num_components == 6) +{ + pi <- items[1:6] + mu <- items[7:12] + var <- items[13:18] +} + +# Plot the output. +plot_ks(opt$kaks_input, opt$output, pi, mu, var)