Mercurial > repos > greg > vsnp_add_zero_coverage
comparison vsnp_add_zero_coverage.py @ 0:3cb0bf7e1b2d draft
Uploaded
author | greg |
---|---|
date | Tue, 21 Apr 2020 09:44:38 -0400 |
parents | |
children | 01312f8a6ca9 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:3cb0bf7e1b2d |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import argparse | |
4 import multiprocessing | |
5 import os | |
6 import pandas | |
7 import pysam | |
8 import queue | |
9 import re | |
10 import shutil | |
11 from numpy import mean | |
12 from Bio import SeqIO | |
13 | |
14 INPUT_BAM_DIR = 'input_bam_dir' | |
15 INPUT_VCF_DIR = 'input_vcf_dir' | |
16 OUTPUT_VCF_DIR = 'output_vcf_dir' | |
17 OUTPUT_METRICS_DIR = 'output_metrics_dir' | |
18 | |
19 | |
20 def get_base_file_name(file_path): | |
21 base_file_name = os.path.basename(file_path) | |
22 if base_file_name.find(".") > 0: | |
23 # Eliminate the extension. | |
24 return os.path.splitext(base_file_name)[0] | |
25 elif base_file_name.find("_") > 0: | |
26 # The dot extension was likely changed to | |
27 # the " character. | |
28 items = base_file_name.split("_") | |
29 return "_".join(items[0:-1]) | |
30 else: | |
31 return base_file_name | |
32 | |
33 | |
34 def get_coverage_and_snp_count(task_queue, reference, output_metrics, output_vcf, timeout): | |
35 while True: | |
36 try: | |
37 tup = task_queue.get(block=True, timeout=timeout) | |
38 except queue.Empty: | |
39 break | |
40 bam_file, vcf_file = tup | |
41 # Create a coverage dictionary. | |
42 coverage_dict = {} | |
43 coverage_list = pysam.depth(bam_file, split_lines=True) | |
44 for line in coverage_list: | |
45 chrom, position, depth = line.split('\t') | |
46 coverage_dict["%s-%s" % (chrom, position)] = depth | |
47 # Convert it to a data frame. | |
48 coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"]) | |
49 # Create a zero coverage dictionary. | |
50 zero_dict = {} | |
51 for record in SeqIO.parse(reference, "fasta"): | |
52 chrom = record.id | |
53 total_len = len(record.seq) | |
54 for pos in list(range(1, total_len + 1)): | |
55 zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 | |
56 # Convert it to a data frame with depth_x | |
57 # and depth_y columns - index is NaN. | |
58 zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) | |
59 coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') | |
60 # depth_x "0" column no longer needed. | |
61 coverage_df = coverage_df.drop(columns=['depth_x']) | |
62 coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) | |
63 # Covert the NaN to 0 coverage and get some metrics. | |
64 coverage_df = coverage_df.fillna(0) | |
65 coverage_df['depth'] = coverage_df['depth'].apply(int) | |
66 total_length = len(coverage_df) | |
67 average_coverage = coverage_df['depth'].mean() | |
68 zero_df = coverage_df[coverage_df['depth'] == 0] | |
69 total_zero_coverage = len(zero_df) | |
70 total_coverage = total_length - total_zero_coverage | |
71 genome_coverage = "{:.2%}".format(total_coverage / total_length) | |
72 # Process the associated VCF input. | |
73 column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] | |
74 vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') | |
75 good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)]) | |
76 base_file_name = get_base_file_name(vcf_file) | |
77 if total_zero_coverage > 0: | |
78 header_file = "%s_header.csv" % base_file_name | |
79 with open(header_file, 'w') as outfile: | |
80 with open(vcf_file) as infile: | |
81 for line in infile: | |
82 if re.search('^#', line): | |
83 outfile.write("%s" % line) | |
84 vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1] | |
85 vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1] | |
86 vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str) | |
87 vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE') | |
88 cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False) | |
89 cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth']) | |
90 cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.') | |
91 cat_df['REF'] = cat_df['REF'].fillna('N') | |
92 cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT') | |
93 cat_df['Sample'] = cat_df['Sample'].fillna('./.') | |
94 cat_df['temp'] = cat_df.index.str.rsplit('-', n=1) | |
95 cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index) | |
96 cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']] | |
97 cat_df['POS'] = cat_df['POS'].astype(int) | |
98 cat_df = cat_df.sort_values(['CHROM', 'POS']) | |
99 body_file = "%s_body.csv" % base_file_name | |
100 cat_df.to_csv(body_file, sep='\t', header=False, index=False) | |
101 if output_vcf is None: | |
102 output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name) | |
103 else: | |
104 output_vcf_file = output_vcf | |
105 with open(output_vcf_file, "w") as outfile: | |
106 for cf in [header_file, body_file]: | |
107 with open(cf, "r") as infile: | |
108 for line in infile: | |
109 outfile.write("%s" % line) | |
110 else: | |
111 if output_vcf is None: | |
112 output_vcf_file = os.path.join(OUTPUT_VCF_DIR, "%s.vcf" % base_file_name) | |
113 else: | |
114 output_vcf_file = output_vcf | |
115 shutil.copyfile(vcf_file, output_vcf_file) | |
116 bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] | |
117 vcf_metrics = [base_file_name, str(good_snp_count), "", ""] | |
118 if output_metrics is None: | |
119 output_metrics_file = os.path.join(OUTPUT_METRICS_DIR, "%s.tabular" % base_file_name) | |
120 else: | |
121 output_metrics_file = output_metrics | |
122 metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] | |
123 with open(output_metrics_file, "w") as fh: | |
124 fh.write("# %s\n" % "\t".join(metrics_columns)) | |
125 fh.write("%s\n" % "\t".join(bam_metrics)) | |
126 fh.write("%s\n" % "\t".join(vcf_metrics)) | |
127 task_queue.task_done() | |
128 | |
129 | |
130 def set_num_cpus(num_files, processes): | |
131 num_cpus = int(multiprocessing.cpu_count()) | |
132 if num_files < num_cpus and num_files < processes: | |
133 return num_files | |
134 if num_cpus < processes: | |
135 half_cpus = int(num_cpus / 2) | |
136 if num_files < half_cpus: | |
137 return num_files | |
138 return half_cpus | |
139 return processes | |
140 | |
141 | |
142 if __name__ == '__main__': | |
143 parser = argparse.ArgumentParser() | |
144 | |
145 parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') | |
146 parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') | |
147 parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') | |
148 parser.add_argument('--processes', action='store', dest='processes', type=int, help='User-selected number of processes to use for job splitting') | |
149 | |
150 args = parser.parse_args() | |
151 | |
152 # The assumption here is that the list of files | |
153 # in both INPUT_BAM_DIR and INPUT_VCF_DIR are | |
154 # equal in number and named such that they are | |
155 # properly matched if the directories contain | |
156 # more than 1 file (i.e., hopefully the bam file | |
157 # names and vcf file names will be something like | |
158 # Mbovis-01D6_* so they can be # sorted and properly | |
159 # associated with each other). | |
160 bam_files = [] | |
161 for file_name in sorted(os.listdir(INPUT_BAM_DIR)): | |
162 file_path = os.path.abspath(os.path.join(INPUT_BAM_DIR, file_name)) | |
163 bam_files.append(file_path) | |
164 vcf_files = [] | |
165 for file_name in sorted(os.listdir(INPUT_VCF_DIR)): | |
166 file_path = os.path.abspath(os.path.join(INPUT_VCF_DIR, file_name)) | |
167 vcf_files.append(file_path) | |
168 | |
169 multiprocessing.set_start_method('spawn') | |
170 queue1 = multiprocessing.JoinableQueue() | |
171 num_files = len(bam_files) | |
172 cpus = set_num_cpus(num_files, args.processes) | |
173 # Set a timeout for get()s in the queue. | |
174 timeout = 0.05 | |
175 | |
176 # Add each associated bam and vcf file pair to the queue. | |
177 for i, bam_file in enumerate(bam_files): | |
178 vcf_file = vcf_files[i] | |
179 queue1.put((bam_file, vcf_file)) | |
180 | |
181 # Complete the get_coverage_and_snp_count task. | |
182 processes = [multiprocessing.Process(target=get_coverage_and_snp_count, args=(queue1, args.reference, args.output_metrics, args.output_vcf, timeout, )) for _ in range(cpus)] | |
183 for p in processes: | |
184 p.start() | |
185 for p in processes: | |
186 p.join() | |
187 queue1.join() | |
188 | |
189 if queue1.empty(): | |
190 queue1.close() | |
191 queue1.join_thread() |