Mercurial > repos > guerler > charts
diff heatmap.r @ 37:eafc7121f553 draft
Uploaded
author | guerler |
---|---|
date | Fri, 09 May 2014 00:59:20 -0400 |
parents | |
children | 5a478e171752 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/heatmap.r Fri May 09 00:59:20 2014 -0400 @@ -0,0 +1,106 @@ +# limits +min_limit = 20 + +# load sparse matrix package +suppressPackageStartupMessages(library('Matrix')) + +# access a numeric column +get_numeric <- function(table, column_key) { + column <- as.numeric(column_key) + column_data <- sapply( table[column], as.numeric ) + return (c(column_data)) +} + +# access a label column +get_label <- function(table, column_key) { + column <- as.numeric(column_key) + return (c(table[column])) +} + +# inflate three columns into matrix +matrify <- function (data) { + if (ncol(data) != 3) + stop('Data frame must have three column format') + plt <- data[, 1] + spc <- data[, 2] + abu <- data[, 3] + plt.codes <- levels(factor(plt)) + spc.codes <- levels(factor(spc)) + taxa <- Matrix(0, nrow=length(plt.codes), ncol=length(spc.codes), sparse=TRUE) + row <- match(plt, plt.codes) + col <- match(spc, spc.codes) + for (i in 1:length(abu)) { + taxa[row[i], col[i]] <- abu[i] + } + colnames(taxa) <- spc.codes + rownames(taxa) <- plt.codes + taxa +} + +# flatten data.frame into three column format +flatten <- function(my_matrix) { + summ <-summary(my_matrix) + summ <- data.frame(i=rownames(my_matrix)[summ$i], j=colnames(my_matrix)[summ$j], x=summ$x) + summ +} + +# wrapper +wrapper <- function(table, columns, options) { + + # initialize output list + l <- list() + + # get number of columns + n = length(columns) + + # consistency check + if (n %% 3 != 0) { + print ('heatmap::wrapper() - Data not consistent (n mod 3 != 0)') + return (l) + } + + # create index sequence + index = seq(1, n, by=3) + + # get keys + keys = names(columns) + + # loop through blocks + for (i in index) { + # create columns + ci <- get_label(table, columns[keys[i]]) + cj <- get_label(table, columns[keys[i+1]]) + cx <- get_numeric(table, columns[keys[i+2]]) + + # create a frame from columns + my_frame <- data.frame(ci=ci, cj=cj, cx=cx) + + # create matrix out of the frame + my_matrix <- matrify(my_frame) + + # create/cluster matrix + row_order <- hclust(dist(my_matrix))$order + col_order <- hclust(dist(t(my_matrix)))$order + + # reorder matrix + my_matrix <- my_matrix[row_order, col_order] + + # get min size + min_limit = max(as.integer(options$limit), min_limit) + + # get max size + max_row = min(length(row_order), min_limit) + max_col = min(length(col_order), min_limit) + + # transform back to three columns + my_flatmatrix = flatten(my_matrix[1:max_row, 1:max_col]) + + # append to result list + l <- append(l, list(my_flatmatrix$i)) + l <- append(l, list(my_flatmatrix$j)) + l <- append(l, list(my_flatmatrix$x)) + } + + # return + return (l) +}