Mercurial > repos > guerler > springsuite
comparison planemo/lib/python3.7/site-packages/networkx/generators/directed.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:d30785e31577 | 1:56ad4e20f292 |
---|---|
1 # -*- coding: utf-8 -*- | |
2 # Copyright (C) 2006-2019 by | |
3 # Aric Hagberg <hagberg@lanl.gov> | |
4 # Dan Schult <dschult@colgate.edu> | |
5 # Pieter Swart <swart@lanl.gov> | |
6 # Copyright (C) 2009 by Willem Ligtenberg <W.P.A.Ligtenberg@tue.nl> | |
7 # All rights reserved. | |
8 # BSD license. | |
9 # | |
10 # Authors: Aric Hagberg (hagberg@lanl.gov) | |
11 # Willem Ligtenberg (W.P.A.Ligtenberg@tue.nl) | |
12 """ | |
13 Generators for some directed graphs, including growing network (GN) graphs and | |
14 scale-free graphs. | |
15 | |
16 """ | |
17 | |
18 from collections import Counter | |
19 | |
20 import networkx as nx | |
21 from networkx.generators.classic import empty_graph | |
22 from networkx.utils import discrete_sequence | |
23 from networkx.utils import weighted_choice | |
24 from networkx.utils import py_random_state | |
25 | |
26 __all__ = ['gn_graph', 'gnc_graph', 'gnr_graph', 'random_k_out_graph', | |
27 'scale_free_graph'] | |
28 | |
29 | |
30 @py_random_state(3) | |
31 def gn_graph(n, kernel=None, create_using=None, seed=None): | |
32 """Returns the growing network (GN) digraph with `n` nodes. | |
33 | |
34 The GN graph is built by adding nodes one at a time with a link to one | |
35 previously added node. The target node for the link is chosen with | |
36 probability based on degree. The default attachment kernel is a linear | |
37 function of the degree of a node. | |
38 | |
39 The graph is always a (directed) tree. | |
40 | |
41 Parameters | |
42 ---------- | |
43 n : int | |
44 The number of nodes for the generated graph. | |
45 kernel : function | |
46 The attachment kernel. | |
47 create_using : NetworkX graph constructor, optional (default DiGraph) | |
48 Graph type to create. If graph instance, then cleared before populated. | |
49 seed : integer, random_state, or None (default) | |
50 Indicator of random number generation state. | |
51 See :ref:`Randomness<randomness>`. | |
52 | |
53 Examples | |
54 -------- | |
55 To create the undirected GN graph, use the :meth:`~DiGraph.to_directed` | |
56 method:: | |
57 | |
58 >>> D = nx.gn_graph(10) # the GN graph | |
59 >>> G = D.to_undirected() # the undirected version | |
60 | |
61 To specify an attachment kernel, use the `kernel` keyword argument:: | |
62 | |
63 >>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5 | |
64 | |
65 References | |
66 ---------- | |
67 .. [1] P. L. Krapivsky and S. Redner, | |
68 Organization of Growing Random Networks, | |
69 Phys. Rev. E, 63, 066123, 2001. | |
70 """ | |
71 G = empty_graph(1, create_using, default=nx.DiGraph) | |
72 if not G.is_directed(): | |
73 raise nx.NetworkXError("create_using must indicate a Directed Graph") | |
74 | |
75 if kernel is None: | |
76 def kernel(x): return x | |
77 | |
78 if n == 1: | |
79 return G | |
80 | |
81 G.add_edge(1, 0) # get started | |
82 ds = [1, 1] # degree sequence | |
83 | |
84 for source in range(2, n): | |
85 # compute distribution from kernel and degree | |
86 dist = [kernel(d) for d in ds] | |
87 # choose target from discrete distribution | |
88 target = discrete_sequence(1, distribution=dist, seed=seed)[0] | |
89 G.add_edge(source, target) | |
90 ds.append(1) # the source has only one link (degree one) | |
91 ds[target] += 1 # add one to the target link degree | |
92 return G | |
93 | |
94 | |
95 @py_random_state(3) | |
96 def gnr_graph(n, p, create_using=None, seed=None): | |
97 """Returns the growing network with redirection (GNR) digraph with `n` | |
98 nodes and redirection probability `p`. | |
99 | |
100 The GNR graph is built by adding nodes one at a time with a link to one | |
101 previously added node. The previous target node is chosen uniformly at | |
102 random. With probabiliy `p` the link is instead "redirected" to the | |
103 successor node of the target. | |
104 | |
105 The graph is always a (directed) tree. | |
106 | |
107 Parameters | |
108 ---------- | |
109 n : int | |
110 The number of nodes for the generated graph. | |
111 p : float | |
112 The redirection probability. | |
113 create_using : NetworkX graph constructor, optional (default DiGraph) | |
114 Graph type to create. If graph instance, then cleared before populated. | |
115 seed : integer, random_state, or None (default) | |
116 Indicator of random number generation state. | |
117 See :ref:`Randomness<randomness>`. | |
118 | |
119 Examples | |
120 -------- | |
121 To create the undirected GNR graph, use the :meth:`~DiGraph.to_directed` | |
122 method:: | |
123 | |
124 >>> D = nx.gnr_graph(10, 0.5) # the GNR graph | |
125 >>> G = D.to_undirected() # the undirected version | |
126 | |
127 References | |
128 ---------- | |
129 .. [1] P. L. Krapivsky and S. Redner, | |
130 Organization of Growing Random Networks, | |
131 Phys. Rev. E, 63, 066123, 2001. | |
132 """ | |
133 G = empty_graph(1, create_using, default=nx.DiGraph) | |
134 if not G.is_directed(): | |
135 raise nx.NetworkXError("create_using must indicate a Directed Graph") | |
136 | |
137 if n == 1: | |
138 return G | |
139 | |
140 for source in range(1, n): | |
141 target = seed.randrange(0, source) | |
142 if seed.random() < p and target != 0: | |
143 target = next(G.successors(target)) | |
144 G.add_edge(source, target) | |
145 return G | |
146 | |
147 | |
148 @py_random_state(2) | |
149 def gnc_graph(n, create_using=None, seed=None): | |
150 """Returns the growing network with copying (GNC) digraph with `n` nodes. | |
151 | |
152 The GNC graph is built by adding nodes one at a time with a link to one | |
153 previously added node (chosen uniformly at random) and to all of that | |
154 node's successors. | |
155 | |
156 Parameters | |
157 ---------- | |
158 n : int | |
159 The number of nodes for the generated graph. | |
160 create_using : NetworkX graph constructor, optional (default DiGraph) | |
161 Graph type to create. If graph instance, then cleared before populated. | |
162 seed : integer, random_state, or None (default) | |
163 Indicator of random number generation state. | |
164 See :ref:`Randomness<randomness>`. | |
165 | |
166 References | |
167 ---------- | |
168 .. [1] P. L. Krapivsky and S. Redner, | |
169 Network Growth by Copying, | |
170 Phys. Rev. E, 71, 036118, 2005k.}, | |
171 """ | |
172 G = empty_graph(1, create_using, default=nx.DiGraph) | |
173 if not G.is_directed(): | |
174 raise nx.NetworkXError("create_using must indicate a Directed Graph") | |
175 | |
176 if n == 1: | |
177 return G | |
178 | |
179 for source in range(1, n): | |
180 target = seed.randrange(0, source) | |
181 for succ in G.successors(target): | |
182 G.add_edge(source, succ) | |
183 G.add_edge(source, target) | |
184 return G | |
185 | |
186 | |
187 @py_random_state(7) | |
188 def scale_free_graph(n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, | |
189 delta_out=0, create_using=None, seed=None): | |
190 """Returns a scale-free directed graph. | |
191 | |
192 Parameters | |
193 ---------- | |
194 n : integer | |
195 Number of nodes in graph | |
196 alpha : float | |
197 Probability for adding a new node connected to an existing node | |
198 chosen randomly according to the in-degree distribution. | |
199 beta : float | |
200 Probability for adding an edge between two existing nodes. | |
201 One existing node is chosen randomly according the in-degree | |
202 distribution and the other chosen randomly according to the out-degree | |
203 distribution. | |
204 gamma : float | |
205 Probability for adding a new node connected to an existing node | |
206 chosen randomly according to the out-degree distribution. | |
207 delta_in : float | |
208 Bias for choosing nodes from in-degree distribution. | |
209 delta_out : float | |
210 Bias for choosing nodes from out-degree distribution. | |
211 create_using : NetworkX graph constructor, optional | |
212 The default is a MultiDiGraph 3-cycle. | |
213 If a graph instance, use it without clearing first. | |
214 If a graph constructor, call it to construct an empty graph. | |
215 seed : integer, random_state, or None (default) | |
216 Indicator of random number generation state. | |
217 See :ref:`Randomness<randomness>`. | |
218 | |
219 Examples | |
220 -------- | |
221 Create a scale-free graph on one hundred nodes:: | |
222 | |
223 >>> G = nx.scale_free_graph(100) | |
224 | |
225 Notes | |
226 ----- | |
227 The sum of `alpha`, `beta`, and `gamma` must be 1. | |
228 | |
229 References | |
230 ---------- | |
231 .. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, | |
232 Directed scale-free graphs, | |
233 Proceedings of the fourteenth annual ACM-SIAM Symposium on | |
234 Discrete Algorithms, 132--139, 2003. | |
235 """ | |
236 | |
237 def _choose_node(G, distribution, delta, psum): | |
238 cumsum = 0.0 | |
239 # normalization | |
240 r = seed.random() | |
241 for n, d in distribution: | |
242 cumsum += (d + delta) / psum | |
243 if r < cumsum: | |
244 break | |
245 return n | |
246 | |
247 if create_using is None or not hasattr(create_using, '_adj'): | |
248 # start with 3-cycle | |
249 G = nx.empty_graph(3, create_using, default=nx.MultiDiGraph) | |
250 G.add_edges_from([(0, 1), (1, 2), (2, 0)]) | |
251 else: | |
252 G = create_using | |
253 if not (G.is_directed() and G.is_multigraph()): | |
254 raise nx.NetworkXError("MultiDiGraph required in create_using") | |
255 | |
256 if alpha <= 0: | |
257 raise ValueError('alpha must be > 0.') | |
258 if beta <= 0: | |
259 raise ValueError('beta must be > 0.') | |
260 if gamma <= 0: | |
261 raise ValueError('gamma must be > 0.') | |
262 | |
263 if abs(alpha + beta + gamma - 1.0) >= 1e-9: | |
264 raise ValueError('alpha+beta+gamma must equal 1.') | |
265 | |
266 number_of_edges = G.number_of_edges() | |
267 while len(G) < n: | |
268 psum_in = number_of_edges + delta_in * len(G) | |
269 psum_out = number_of_edges + delta_out * len(G) | |
270 r = seed.random() | |
271 # random choice in alpha,beta,gamma ranges | |
272 if r < alpha: | |
273 # alpha | |
274 # add new node v | |
275 v = len(G) | |
276 # choose w according to in-degree and delta_in | |
277 w = _choose_node(G, G.in_degree(), delta_in, psum_in) | |
278 elif r < alpha + beta: | |
279 # beta | |
280 # choose v according to out-degree and delta_out | |
281 v = _choose_node(G, G.out_degree(), delta_out, psum_out) | |
282 # choose w according to in-degree and delta_in | |
283 w = _choose_node(G, G.in_degree(), delta_in, psum_in) | |
284 else: | |
285 # gamma | |
286 # choose v according to out-degree and delta_out | |
287 v = _choose_node(G, G.out_degree(), delta_out, psum_out) | |
288 # add new node w | |
289 w = len(G) | |
290 G.add_edge(v, w) | |
291 number_of_edges += 1 | |
292 return G | |
293 | |
294 | |
295 @py_random_state(4) | |
296 def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, | |
297 seed=None): | |
298 """Returns a random `k`-out graph with uniform attachment. | |
299 | |
300 A random `k`-out graph with uniform attachment is a multidigraph | |
301 generated by the following algorithm. For each node *u*, choose | |
302 `k` nodes *v* uniformly at random (with replacement). Add a | |
303 directed edge joining *u* to *v*. | |
304 | |
305 Parameters | |
306 ---------- | |
307 n : int | |
308 The number of nodes in the returned graph. | |
309 | |
310 k : int | |
311 The out-degree of each node in the returned graph. | |
312 | |
313 self_loops : bool | |
314 If True, self-loops are allowed when generating the graph. | |
315 | |
316 with_replacement : bool | |
317 If True, neighbors are chosen with replacement and the | |
318 returned graph will be a directed multigraph. Otherwise, | |
319 neighbors are chosen without replacement and the returned graph | |
320 will be a directed graph. | |
321 | |
322 seed : integer, random_state, or None (default) | |
323 Indicator of random number generation state. | |
324 See :ref:`Randomness<randomness>`. | |
325 | |
326 Returns | |
327 ------- | |
328 NetworkX graph | |
329 A `k`-out-regular directed graph generated according to the | |
330 above algorithm. It will be a multigraph if and only if | |
331 `with_replacement` is True. | |
332 | |
333 Raises | |
334 ------ | |
335 ValueError | |
336 If `with_replacement` is False and `k` is greater than | |
337 `n`. | |
338 | |
339 See also | |
340 -------- | |
341 random_k_out_graph | |
342 | |
343 Notes | |
344 ----- | |
345 The return digraph or multidigraph may not be strongly connected, or | |
346 even weakly connected. | |
347 | |
348 If `with_replacement` is True, this function is similar to | |
349 :func:`random_k_out_graph`, if that function had parameter `alpha` | |
350 set to positive infinity. | |
351 | |
352 """ | |
353 if with_replacement: | |
354 create_using = nx.MultiDiGraph() | |
355 | |
356 def sample(v, nodes): | |
357 if not self_loops: | |
358 nodes = nodes - {v} | |
359 return (seed.choice(list(nodes)) for i in range(k)) | |
360 | |
361 else: | |
362 create_using = nx.DiGraph() | |
363 | |
364 def sample(v, nodes): | |
365 if not self_loops: | |
366 nodes = nodes - {v} | |
367 return seed.sample(nodes, k) | |
368 | |
369 G = nx.empty_graph(n, create_using) | |
370 nodes = set(G) | |
371 for u in G: | |
372 G.add_edges_from((u, v) for v in sample(u, nodes)) | |
373 return G | |
374 | |
375 | |
376 @py_random_state(4) | |
377 def random_k_out_graph(n, k, alpha, self_loops=True, seed=None): | |
378 """Returns a random `k`-out graph with preferential attachment. | |
379 | |
380 A random `k`-out graph with preferential attachment is a | |
381 multidigraph generated by the following algorithm. | |
382 | |
383 1. Begin with an empty digraph, and initially set each node to have | |
384 weight `alpha`. | |
385 2. Choose a node `u` with out-degree less than `k` uniformly at | |
386 random. | |
387 3. Choose a node `v` from with probability proportional to its | |
388 weight. | |
389 4. Add a directed edge from `u` to `v`, and increase the weight | |
390 of `v` by one. | |
391 5. If each node has out-degree `k`, halt, otherwise repeat from | |
392 step 2. | |
393 | |
394 For more information on this model of random graph, see [1]. | |
395 | |
396 Parameters | |
397 ---------- | |
398 n : int | |
399 The number of nodes in the returned graph. | |
400 | |
401 k : int | |
402 The out-degree of each node in the returned graph. | |
403 | |
404 alpha : float | |
405 A positive :class:`float` representing the initial weight of | |
406 each vertex. A higher number means that in step 3 above, nodes | |
407 will be chosen more like a true uniformly random sample, and a | |
408 lower number means that nodes are more likely to be chosen as | |
409 their in-degree increases. If this parameter is not positive, a | |
410 :exc:`ValueError` is raised. | |
411 | |
412 self_loops : bool | |
413 If True, self-loops are allowed when generating the graph. | |
414 | |
415 seed : integer, random_state, or None (default) | |
416 Indicator of random number generation state. | |
417 See :ref:`Randomness<randomness>`. | |
418 | |
419 Returns | |
420 ------- | |
421 :class:`~networkx.classes.MultiDiGraph` | |
422 A `k`-out-regular multidigraph generated according to the above | |
423 algorithm. | |
424 | |
425 Raises | |
426 ------ | |
427 ValueError | |
428 If `alpha` is not positive. | |
429 | |
430 Notes | |
431 ----- | |
432 The returned multidigraph may not be strongly connected, or even | |
433 weakly connected. | |
434 | |
435 References | |
436 ---------- | |
437 [1]: Peterson, Nicholas R., and Boris Pittel. | |
438 "Distance between two random `k`-out digraphs, with and without | |
439 preferential attachment." | |
440 arXiv preprint arXiv:1311.5961 (2013). | |
441 <https://arxiv.org/abs/1311.5961> | |
442 | |
443 """ | |
444 if alpha < 0: | |
445 raise ValueError('alpha must be positive') | |
446 G = nx.empty_graph(n, create_using=nx.MultiDiGraph) | |
447 weights = Counter({v: alpha for v in G}) | |
448 for i in range(k * n): | |
449 u = seed.choice([v for v, d in G.out_degree() if d < k]) | |
450 # If self-loops are not allowed, make the source node `u` have | |
451 # weight zero. | |
452 if not self_loops: | |
453 adjustment = Counter({u: weights[u]}) | |
454 else: | |
455 adjustment = Counter() | |
456 v = weighted_choice(weights - adjustment, seed=seed) | |
457 G.add_edge(u, v) | |
458 weights[v] += 1 | |
459 return G |