Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/algorithms/euler.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/algorithms/euler.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,379 @@ +# -*- coding: utf-8 -*- +# +# Copyright (C) 2010 by +# Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +# All rights reserved. +# BSD license. +# +# Authors: +# Nima Mohammadi <nima.irt@gmail.com> +# Aric Hagberg <hagberg@lanl.gov> +# Mike Trenfield <william.trenfield@utsouthwestern.edu> +""" +Eulerian circuits and graphs. +""" +from itertools import combinations + +import networkx as nx +from ..utils import arbitrary_element, not_implemented_for + +__all__ = ['is_eulerian', 'eulerian_circuit', 'eulerize', + 'is_semieulerian', 'has_eulerian_path', 'eulerian_path', + ] + + +def is_eulerian(G): + """Returns True if and only if `G` is Eulerian. + + A graph is *Eulerian* if it has an Eulerian circuit. An *Eulerian + circuit* is a closed walk that includes each edge of a graph exactly + once. + + Parameters + ---------- + G : NetworkX graph + A graph, either directed or undirected. + + Examples + -------- + >>> nx.is_eulerian(nx.DiGraph({0: [3], 1: [2], 2: [3], 3: [0, 1]})) + True + >>> nx.is_eulerian(nx.complete_graph(5)) + True + >>> nx.is_eulerian(nx.petersen_graph()) + False + + Notes + ----- + If the graph is not connected (or not strongly connected, for + directed graphs), this function returns False. + + """ + if G.is_directed(): + # Every node must have equal in degree and out degree and the + # graph must be strongly connected + return (all(G.in_degree(n) == G.out_degree(n) for n in G) and + nx.is_strongly_connected(G)) + # An undirected Eulerian graph has no vertices of odd degree and + # must be connected. + return all(d % 2 == 0 for v, d in G.degree()) and nx.is_connected(G) + + +def is_semieulerian(G): + """Return True iff `G` is semi-Eulerian. + + G is semi-Eulerian if it has an Eulerian path but no Eulerian circuit. + """ + return has_eulerian_path(G) and not is_eulerian(G) + + +def _find_path_start(G): + """Return a suitable starting vertex for an Eulerian path. + + If no path exists, return None. + """ + if not has_eulerian_path(G): + return None + + if is_eulerian(G): + return arbitrary_element(G) + + if G.is_directed(): + v1, v2 = [v for v in G if G.in_degree(v) != G.out_degree(v)] + # Determines which is the 'start' node (as opposed to the 'end') + if G.out_degree(v1) > G.in_degree(v1): + return v1 + else: + return v2 + + else: + # In an undirected graph randomly choose one of the possibilities + start = [v for v in G if G.degree(v) % 2 != 0][0] + return start + + +def _simplegraph_eulerian_circuit(G, source): + if G.is_directed(): + degree = G.out_degree + edges = G.out_edges + else: + degree = G.degree + edges = G.edges + vertex_stack = [source] + last_vertex = None + while vertex_stack: + current_vertex = vertex_stack[-1] + if degree(current_vertex) == 0: + if last_vertex is not None: + yield (last_vertex, current_vertex) + last_vertex = current_vertex + vertex_stack.pop() + else: + _, next_vertex = arbitrary_element(edges(current_vertex)) + vertex_stack.append(next_vertex) + G.remove_edge(current_vertex, next_vertex) + + +def _multigraph_eulerian_circuit(G, source): + if G.is_directed(): + degree = G.out_degree + edges = G.out_edges + else: + degree = G.degree + edges = G.edges + vertex_stack = [(source, None)] + last_vertex = None + last_key = None + while vertex_stack: + current_vertex, current_key = vertex_stack[-1] + if degree(current_vertex) == 0: + if last_vertex is not None: + yield (last_vertex, current_vertex, last_key) + last_vertex, last_key = current_vertex, current_key + vertex_stack.pop() + else: + triple = arbitrary_element(edges(current_vertex, keys=True)) + _, next_vertex, next_key = triple + vertex_stack.append((next_vertex, next_key)) + G.remove_edge(current_vertex, next_vertex, next_key) + + +def eulerian_circuit(G, source=None, keys=False): + """Returns an iterator over the edges of an Eulerian circuit in `G`. + + An *Eulerian circuit* is a closed walk that includes each edge of a + graph exactly once. + + Parameters + ---------- + G : NetworkX graph + A graph, either directed or undirected. + + source : node, optional + Starting node for circuit. + + keys : bool + If False, edges generated by this function will be of the form + ``(u, v)``. Otherwise, edges will be of the form ``(u, v, k)``. + This option is ignored unless `G` is a multigraph. + + Returns + ------- + edges : iterator + An iterator over edges in the Eulerian circuit. + + Raises + ------ + NetworkXError + If the graph is not Eulerian. + + See Also + -------- + is_eulerian + + Notes + ----- + This is a linear time implementation of an algorithm adapted from [1]_. + + For general information about Euler tours, see [2]_. + + References + ---------- + .. [1] J. Edmonds, E. L. Johnson. + Matching, Euler tours and the Chinese postman. + Mathematical programming, Volume 5, Issue 1 (1973), 111-114. + .. [2] https://en.wikipedia.org/wiki/Eulerian_path + + Examples + -------- + To get an Eulerian circuit in an undirected graph:: + + >>> G = nx.complete_graph(3) + >>> list(nx.eulerian_circuit(G)) + [(0, 2), (2, 1), (1, 0)] + >>> list(nx.eulerian_circuit(G, source=1)) + [(1, 2), (2, 0), (0, 1)] + + To get the sequence of vertices in an Eulerian circuit:: + + >>> [u for u, v in nx.eulerian_circuit(G)] + [0, 2, 1] + + """ + if not is_eulerian(G): + raise nx.NetworkXError("G is not Eulerian.") + if G.is_directed(): + G = G.reverse() + else: + G = G.copy() + if source is None: + source = arbitrary_element(G) + if G.is_multigraph(): + for u, v, k in _multigraph_eulerian_circuit(G, source): + if keys: + yield u, v, k + else: + yield u, v + else: + for u, v in _simplegraph_eulerian_circuit(G, source): + yield u, v + + +def has_eulerian_path(G): + """Return True iff `G` has an Eulerian path. + + An Eulerian path is a path in a graph which uses each edge of a graph + exactly once. + + A directed graph has an Eulerian path iff: + - at most one vertex has out_degree - in_degree = 1, + - at most one vertex has in_degree - out_degree = 1, + - every other vertex has equal in_degree and out_degree, + - and all of its vertices with nonzero degree belong to a + - single connected component of the underlying undirected graph. + + An undirected graph has an Eulerian path iff: + - exactly zero or two vertices have odd degree, + - and all of its vertices with nonzero degree belong to a + - single connected component. + + Parameters + ---------- + G : NetworkX Graph + The graph to find an euler path in. + + Returns + ------- + Bool : True if G has an eulerian path. + + See Also + -------- + is_eulerian + eulerian_path + """ + if G.is_directed(): + ins = G.in_degree + outs = G.out_degree + semibalanced_ins = sum(ins(v) - outs(v) == 1 for v in G) + semibalanced_outs = sum(outs(v) - ins(v) == 1 for v in G) + return (semibalanced_ins <= 1 and + semibalanced_outs <= 1 and + sum(G.in_degree(v) != G.out_degree(v) for v in G) <= 2 and + nx.is_weakly_connected(G)) + else: + return (sum(d % 2 == 1 for v, d in G.degree()) in (0, 2) + and nx.is_connected(G)) + + +def eulerian_path(G, source=None, keys=False): + """Return an iterator over the edges of an Eulerian path in `G`. + + Parameters + ---------- + G : NetworkX Graph + The graph in which to look for an eulerian path. + source : node or None (default: None) + The node at which to start the search. None means search over all + starting nodes. + keys : Bool (default: False) + Indicates whether to yield edge 3-tuples (u, v, edge_key). + The default yields edge 2-tuples + + Yields + ------ + Edge tuples along the eulerian path. + + Warning: If `source` provided is not the start node of an Euler path + will raise error even if an Euler Path exists. + """ + if not has_eulerian_path(G): + raise nx.NetworkXError("Graph has no Eulerian paths.") + if G.is_directed(): + G = G.reverse() + else: + G = G.copy() + if source is None: + source = _find_path_start(G) + if G.is_multigraph(): + for u, v, k in _multigraph_eulerian_circuit(G, source): + if keys: + yield u, v, k + else: + yield u, v + else: + for u, v in _simplegraph_eulerian_circuit(G, source): + yield u, v + + +@not_implemented_for('directed') +def eulerize(G): + """Transforms a graph into an Eulerian graph + + Parameters + ---------- + G : NetworkX graph + An undirected graph + + Returns + ------- + G : NetworkX multigraph + + Raises + ------ + NetworkXError + If the graph is not connected. + + See Also + -------- + is_eulerian + eulerian_circuit + + References + ---------- + .. [1] J. Edmonds, E. L. Johnson. + Matching, Euler tours and the Chinese postman. + Mathematical programming, Volume 5, Issue 1 (1973), 111-114. + [2] https://en.wikipedia.org/wiki/Eulerian_path + .. [3] http://web.math.princeton.edu/math_alive/5/Notes1.pdf + + Examples + -------- + >>> G = nx.complete_graph(10) + >>> H = nx.eulerize(G) + >>> nx.is_eulerian(H) + True + + """ + if G.order() == 0: + raise nx.NetworkXPointlessConcept("Cannot Eulerize null graph") + if not nx.is_connected(G): + raise nx.NetworkXError("G is not connected") + odd_degree_nodes = [n for n, d in G.degree() if d % 2 == 1] + G = nx.MultiGraph(G) + if len(odd_degree_nodes) == 0: + return G + + # get all shortest paths between vertices of odd degree + odd_deg_pairs_paths = [(m, + {n: nx.shortest_path(G, source=m, target=n)} + ) + for m, n in combinations(odd_degree_nodes, 2)] + + # use inverse path lengths as edge-weights in a new graph + # store the paths in the graph for easy indexing later + Gp = nx.Graph() + for n, Ps in odd_deg_pairs_paths: + for m, P in Ps.items(): + if n != m: + Gp.add_edge(m, n, weight=1/len(P), path=P) + + # find the minimum weight matching of edges in the weighted graph + best_matching = nx.Graph(list(nx.max_weight_matching(Gp))) + + # duplicate each edge along each path in the set of paths in Gp + for m, n in best_matching.edges(): + path = Gp[m][n]["path"] + G.add_edges_from(nx.utils.pairwise(path)) + return G