diff planemo/lib/python3.7/site-packages/networkx/algorithms/similarity.py @ 1:56ad4e20f292 draft

"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author guerler
date Fri, 31 Jul 2020 00:32:28 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/planemo/lib/python3.7/site-packages/networkx/algorithms/similarity.py	Fri Jul 31 00:32:28 2020 -0400
@@ -0,0 +1,1256 @@
+# -*- coding: utf-8 -*-
+#    Copyright (C) 2010 by
+#    Aric Hagberg <hagberg@lanl.gov>
+#    Dan Schult <dschult@colgate.edu>
+#    Pieter Swart <swart@lanl.gov>
+#    All rights reserved.
+#    BSD license.
+#
+# Author:  Andrey Paramonov <paramon@acdlabs.ru>
+""" Functions measuring similarity using graph edit distance.
+
+The graph edit distance is the number of edge/node changes needed
+to make two graphs isomorphic.
+
+The default algorithm/implementation is sub-optimal for some graphs.
+The problem of finding the exact Graph Edit Distance (GED) is NP-hard
+so it is often slow. If the simple interface `graph_edit_distance`
+takes too long for your graph, try `optimize_graph_edit_distance`
+and/or `optimize_edit_paths`.
+
+At the same time, I encourage capable people to investigate
+alternative GED algorithms, in order to improve the choices available.
+"""
+from itertools import product
+import math
+import networkx as nx
+from operator import *
+import sys
+
+__author__ = 'Andrey Paramonov <paramon@acdlabs.ru>'
+
+__all__ = [
+    'graph_edit_distance',
+    'optimal_edit_paths',
+    'optimize_graph_edit_distance',
+    'optimize_edit_paths',
+    'simrank_similarity',
+    'simrank_similarity_numpy',
+]
+
+
+def debug_print(*args, **kwargs):
+    print(*args, **kwargs)
+
+
+def graph_edit_distance(G1, G2, node_match=None, edge_match=None,
+                        node_subst_cost=None, node_del_cost=None,
+                        node_ins_cost=None,
+                        edge_subst_cost=None, edge_del_cost=None,
+                        edge_ins_cost=None,
+                        upper_bound=None):
+    """Returns GED (graph edit distance) between graphs G1 and G2.
+
+    Graph edit distance is a graph similarity measure analogous to
+    Levenshtein distance for strings.  It is defined as minimum cost
+    of edit path (sequence of node and edge edit operations)
+    transforming graph G1 to graph isomorphic to G2.
+
+    Parameters
+    ----------
+    G1, G2: graphs
+        The two graphs G1 and G2 must be of the same type.
+
+    node_match : callable
+        A function that returns True if node n1 in G1 and n2 in G2
+        should be considered equal during matching.
+
+        The function will be called like
+
+           node_match(G1.nodes[n1], G2.nodes[n2]).
+
+        That is, the function will receive the node attribute
+        dictionaries for n1 and n2 as inputs.
+
+        Ignored if node_subst_cost is specified.  If neither
+        node_match nor node_subst_cost are specified then node
+        attributes are not considered.
+
+    edge_match : callable
+        A function that returns True if the edge attribute dictionaries
+        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
+        be considered equal during matching.
+
+        The function will be called like
+
+           edge_match(G1[u1][v1], G2[u2][v2]).
+
+        That is, the function will receive the edge attribute
+        dictionaries of the edges under consideration.
+
+        Ignored if edge_subst_cost is specified.  If neither
+        edge_match nor edge_subst_cost are specified then edge
+        attributes are not considered.
+
+    node_subst_cost, node_del_cost, node_ins_cost : callable
+        Functions that return the costs of node substitution, node
+        deletion, and node insertion, respectively.
+
+        The functions will be called like
+
+           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
+           node_del_cost(G1.nodes[n1]),
+           node_ins_cost(G2.nodes[n2]).
+
+        That is, the functions will receive the node attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function node_subst_cost overrides node_match if specified.
+        If neither node_match nor node_subst_cost are specified then
+        default node substitution cost of 0 is used (node attributes
+        are not considered during matching).
+
+        If node_del_cost is not specified then default node deletion
+        cost of 1 is used.  If node_ins_cost is not specified then
+        default node insertion cost of 1 is used.
+
+    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
+        Functions that return the costs of edge substitution, edge
+        deletion, and edge insertion, respectively.
+
+        The functions will be called like
+
+           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
+           edge_del_cost(G1[u1][v1]),
+           edge_ins_cost(G2[u2][v2]).
+
+        That is, the functions will receive the edge attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function edge_subst_cost overrides edge_match if specified.
+        If neither edge_match nor edge_subst_cost are specified then
+        default edge substitution cost of 0 is used (edge attributes
+        are not considered during matching).
+
+        If edge_del_cost is not specified then default edge deletion
+        cost of 1 is used.  If edge_ins_cost is not specified then
+        default edge insertion cost of 1 is used.
+
+    upper_bound : numeric
+        Maximum edit distance to consider.  Return None if no edit
+        distance under or equal to upper_bound exists.
+
+    Examples
+    --------
+    >>> G1 = nx.cycle_graph(6)
+    >>> G2 = nx.wheel_graph(7)
+    >>> nx.graph_edit_distance(G1, G2)
+    7.0
+
+    See Also
+    --------
+    optimal_edit_paths, optimize_graph_edit_distance,
+
+    is_isomorphic (test for graph edit distance of 0)
+
+    References
+    ----------
+    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
+       Martineau. An Exact Graph Edit Distance Algorithm for Solving
+       Pattern Recognition Problems. 4th International Conference on
+       Pattern Recognition Applications and Methods 2015, Jan 2015,
+       Lisbon, Portugal. 2015,
+       <10.5220/0005209202710278>. <hal-01168816>
+       https://hal.archives-ouvertes.fr/hal-01168816
+
+    """
+    bestcost = None
+    for vertex_path, edge_path, cost in \
+        optimize_edit_paths(G1, G2, node_match, edge_match,
+                            node_subst_cost, node_del_cost, node_ins_cost,
+                            edge_subst_cost, edge_del_cost, edge_ins_cost,
+                            upper_bound, True):
+        #assert bestcost is None or cost < bestcost
+        bestcost = cost
+    return bestcost
+
+
+def optimal_edit_paths(G1, G2, node_match=None, edge_match=None,
+                       node_subst_cost=None, node_del_cost=None,
+                       node_ins_cost=None,
+                       edge_subst_cost=None, edge_del_cost=None,
+                       edge_ins_cost=None,
+                       upper_bound=None):
+    """Returns all minimum-cost edit paths transforming G1 to G2.
+
+    Graph edit path is a sequence of node and edge edit operations
+    transforming graph G1 to graph isomorphic to G2.  Edit operations
+    include substitutions, deletions, and insertions.
+
+    Parameters
+    ----------
+    G1, G2: graphs
+        The two graphs G1 and G2 must be of the same type.
+
+    node_match : callable
+        A function that returns True if node n1 in G1 and n2 in G2
+        should be considered equal during matching.
+
+        The function will be called like
+
+           node_match(G1.nodes[n1], G2.nodes[n2]).
+
+        That is, the function will receive the node attribute
+        dictionaries for n1 and n2 as inputs.
+
+        Ignored if node_subst_cost is specified.  If neither
+        node_match nor node_subst_cost are specified then node
+        attributes are not considered.
+
+    edge_match : callable
+        A function that returns True if the edge attribute dictionaries
+        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
+        be considered equal during matching.
+
+        The function will be called like
+
+           edge_match(G1[u1][v1], G2[u2][v2]).
+
+        That is, the function will receive the edge attribute
+        dictionaries of the edges under consideration.
+
+        Ignored if edge_subst_cost is specified.  If neither
+        edge_match nor edge_subst_cost are specified then edge
+        attributes are not considered.
+
+    node_subst_cost, node_del_cost, node_ins_cost : callable
+        Functions that return the costs of node substitution, node
+        deletion, and node insertion, respectively.
+
+        The functions will be called like
+
+           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
+           node_del_cost(G1.nodes[n1]),
+           node_ins_cost(G2.nodes[n2]).
+
+        That is, the functions will receive the node attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function node_subst_cost overrides node_match if specified.
+        If neither node_match nor node_subst_cost are specified then
+        default node substitution cost of 0 is used (node attributes
+        are not considered during matching).
+
+        If node_del_cost is not specified then default node deletion
+        cost of 1 is used.  If node_ins_cost is not specified then
+        default node insertion cost of 1 is used.
+
+    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
+        Functions that return the costs of edge substitution, edge
+        deletion, and edge insertion, respectively.
+
+        The functions will be called like
+
+           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
+           edge_del_cost(G1[u1][v1]),
+           edge_ins_cost(G2[u2][v2]).
+
+        That is, the functions will receive the edge attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function edge_subst_cost overrides edge_match if specified.
+        If neither edge_match nor edge_subst_cost are specified then
+        default edge substitution cost of 0 is used (edge attributes
+        are not considered during matching).
+
+        If edge_del_cost is not specified then default edge deletion
+        cost of 1 is used.  If edge_ins_cost is not specified then
+        default edge insertion cost of 1 is used.
+
+    upper_bound : numeric
+        Maximum edit distance to consider.
+
+    Returns
+    -------
+    edit_paths : list of tuples (node_edit_path, edge_edit_path)
+        node_edit_path : list of tuples (u, v)
+        edge_edit_path : list of tuples ((u1, v1), (u2, v2))
+
+    cost : numeric
+        Optimal edit path cost (graph edit distance).
+
+    Examples
+    --------
+    >>> G1 = nx.cycle_graph(6)
+    >>> G2 = nx.wheel_graph(7)
+    >>> paths, cost = nx.optimal_edit_paths(G1, G2)
+    >>> len(paths)
+    84
+    >>> cost
+    7.0
+
+    See Also
+    --------
+    graph_edit_distance, optimize_edit_paths
+
+    References
+    ----------
+    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
+       Martineau. An Exact Graph Edit Distance Algorithm for Solving
+       Pattern Recognition Problems. 4th International Conference on
+       Pattern Recognition Applications and Methods 2015, Jan 2015,
+       Lisbon, Portugal. 2015,
+       <10.5220/0005209202710278>. <hal-01168816>
+       https://hal.archives-ouvertes.fr/hal-01168816
+
+    """
+    paths = list()
+    bestcost = None
+    for vertex_path, edge_path, cost in \
+        optimize_edit_paths(G1, G2, node_match, edge_match,
+                            node_subst_cost, node_del_cost, node_ins_cost,
+                            edge_subst_cost, edge_del_cost, edge_ins_cost,
+                            upper_bound, False):
+        #assert bestcost is None or cost <= bestcost
+        if bestcost is not None and cost < bestcost:
+            paths = list()
+        paths.append((vertex_path, edge_path))
+        bestcost = cost
+    return paths, bestcost
+
+
+def optimize_graph_edit_distance(G1, G2, node_match=None, edge_match=None,
+                                 node_subst_cost=None, node_del_cost=None,
+                                 node_ins_cost=None,
+                                 edge_subst_cost=None, edge_del_cost=None,
+                                 edge_ins_cost=None,
+                                 upper_bound=None):
+    """Returns consecutive approximations of GED (graph edit distance)
+    between graphs G1 and G2.
+
+    Graph edit distance is a graph similarity measure analogous to
+    Levenshtein distance for strings.  It is defined as minimum cost
+    of edit path (sequence of node and edge edit operations)
+    transforming graph G1 to graph isomorphic to G2.
+
+    Parameters
+    ----------
+    G1, G2: graphs
+        The two graphs G1 and G2 must be of the same type.
+
+    node_match : callable
+        A function that returns True if node n1 in G1 and n2 in G2
+        should be considered equal during matching.
+
+        The function will be called like
+
+           node_match(G1.nodes[n1], G2.nodes[n2]).
+
+        That is, the function will receive the node attribute
+        dictionaries for n1 and n2 as inputs.
+
+        Ignored if node_subst_cost is specified.  If neither
+        node_match nor node_subst_cost are specified then node
+        attributes are not considered.
+
+    edge_match : callable
+        A function that returns True if the edge attribute dictionaries
+        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
+        be considered equal during matching.
+
+        The function will be called like
+
+           edge_match(G1[u1][v1], G2[u2][v2]).
+
+        That is, the function will receive the edge attribute
+        dictionaries of the edges under consideration.
+
+        Ignored if edge_subst_cost is specified.  If neither
+        edge_match nor edge_subst_cost are specified then edge
+        attributes are not considered.
+
+    node_subst_cost, node_del_cost, node_ins_cost : callable
+        Functions that return the costs of node substitution, node
+        deletion, and node insertion, respectively.
+
+        The functions will be called like
+
+           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
+           node_del_cost(G1.nodes[n1]),
+           node_ins_cost(G2.nodes[n2]).
+
+        That is, the functions will receive the node attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function node_subst_cost overrides node_match if specified.
+        If neither node_match nor node_subst_cost are specified then
+        default node substitution cost of 0 is used (node attributes
+        are not considered during matching).
+
+        If node_del_cost is not specified then default node deletion
+        cost of 1 is used.  If node_ins_cost is not specified then
+        default node insertion cost of 1 is used.
+
+    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
+        Functions that return the costs of edge substitution, edge
+        deletion, and edge insertion, respectively.
+
+        The functions will be called like
+
+           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
+           edge_del_cost(G1[u1][v1]),
+           edge_ins_cost(G2[u2][v2]).
+
+        That is, the functions will receive the edge attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function edge_subst_cost overrides edge_match if specified.
+        If neither edge_match nor edge_subst_cost are specified then
+        default edge substitution cost of 0 is used (edge attributes
+        are not considered during matching).
+
+        If edge_del_cost is not specified then default edge deletion
+        cost of 1 is used.  If edge_ins_cost is not specified then
+        default edge insertion cost of 1 is used.
+
+    upper_bound : numeric
+        Maximum edit distance to consider.
+
+    Returns
+    -------
+    Generator of consecutive approximations of graph edit distance.
+
+    Examples
+    --------
+    >>> G1 = nx.cycle_graph(6)
+    >>> G2 = nx.wheel_graph(7)
+    >>> for v in nx.optimize_graph_edit_distance(G1, G2):
+    ...     minv = v
+    >>> minv
+    7.0
+
+    See Also
+    --------
+    graph_edit_distance, optimize_edit_paths
+
+    References
+    ----------
+    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
+       Martineau. An Exact Graph Edit Distance Algorithm for Solving
+       Pattern Recognition Problems. 4th International Conference on
+       Pattern Recognition Applications and Methods 2015, Jan 2015,
+       Lisbon, Portugal. 2015,
+       <10.5220/0005209202710278>. <hal-01168816>
+       https://hal.archives-ouvertes.fr/hal-01168816
+    """
+    for vertex_path, edge_path, cost in \
+        optimize_edit_paths(G1, G2, node_match, edge_match,
+                            node_subst_cost, node_del_cost, node_ins_cost,
+                            edge_subst_cost, edge_del_cost, edge_ins_cost,
+                            upper_bound, True):
+        yield cost
+
+
+def optimize_edit_paths(G1, G2, node_match=None, edge_match=None,
+                        node_subst_cost=None, node_del_cost=None,
+                        node_ins_cost=None,
+                        edge_subst_cost=None, edge_del_cost=None,
+                        edge_ins_cost=None,
+                        upper_bound=None, strictly_decreasing=True):
+    """GED (graph edit distance) calculation: advanced interface.
+
+    Graph edit path is a sequence of node and edge edit operations
+    transforming graph G1 to graph isomorphic to G2.  Edit operations
+    include substitutions, deletions, and insertions.
+
+    Graph edit distance is defined as minimum cost of edit path.
+
+    Parameters
+    ----------
+    G1, G2: graphs
+        The two graphs G1 and G2 must be of the same type.
+
+    node_match : callable
+        A function that returns True if node n1 in G1 and n2 in G2
+        should be considered equal during matching.
+
+        The function will be called like
+
+           node_match(G1.nodes[n1], G2.nodes[n2]).
+
+        That is, the function will receive the node attribute
+        dictionaries for n1 and n2 as inputs.
+
+        Ignored if node_subst_cost is specified.  If neither
+        node_match nor node_subst_cost are specified then node
+        attributes are not considered.
+
+    edge_match : callable
+        A function that returns True if the edge attribute dictionaries
+        for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
+        be considered equal during matching.
+
+        The function will be called like
+
+           edge_match(G1[u1][v1], G2[u2][v2]).
+
+        That is, the function will receive the edge attribute
+        dictionaries of the edges under consideration.
+
+        Ignored if edge_subst_cost is specified.  If neither
+        edge_match nor edge_subst_cost are specified then edge
+        attributes are not considered.
+
+    node_subst_cost, node_del_cost, node_ins_cost : callable
+        Functions that return the costs of node substitution, node
+        deletion, and node insertion, respectively.
+
+        The functions will be called like
+
+           node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
+           node_del_cost(G1.nodes[n1]),
+           node_ins_cost(G2.nodes[n2]).
+
+        That is, the functions will receive the node attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function node_subst_cost overrides node_match if specified.
+        If neither node_match nor node_subst_cost are specified then
+        default node substitution cost of 0 is used (node attributes
+        are not considered during matching).
+
+        If node_del_cost is not specified then default node deletion
+        cost of 1 is used.  If node_ins_cost is not specified then
+        default node insertion cost of 1 is used.
+
+    edge_subst_cost, edge_del_cost, edge_ins_cost : callable
+        Functions that return the costs of edge substitution, edge
+        deletion, and edge insertion, respectively.
+
+        The functions will be called like
+
+           edge_subst_cost(G1[u1][v1], G2[u2][v2]),
+           edge_del_cost(G1[u1][v1]),
+           edge_ins_cost(G2[u2][v2]).
+
+        That is, the functions will receive the edge attribute
+        dictionaries as inputs.  The functions are expected to return
+        positive numeric values.
+
+        Function edge_subst_cost overrides edge_match if specified.
+        If neither edge_match nor edge_subst_cost are specified then
+        default edge substitution cost of 0 is used (edge attributes
+        are not considered during matching).
+
+        If edge_del_cost is not specified then default edge deletion
+        cost of 1 is used.  If edge_ins_cost is not specified then
+        default edge insertion cost of 1 is used.
+
+    upper_bound : numeric
+        Maximum edit distance to consider.
+
+    strictly_decreasing : bool
+        If True, return consecutive approximations of strictly
+        decreasing cost.  Otherwise, return all edit paths of cost
+        less than or equal to the previous minimum cost.
+
+    Returns
+    -------
+    Generator of tuples (node_edit_path, edge_edit_path, cost)
+        node_edit_path : list of tuples (u, v)
+        edge_edit_path : list of tuples ((u1, v1), (u2, v2))
+        cost : numeric
+
+    See Also
+    --------
+    graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths
+
+    References
+    ----------
+    .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
+       Martineau. An Exact Graph Edit Distance Algorithm for Solving
+       Pattern Recognition Problems. 4th International Conference on
+       Pattern Recognition Applications and Methods 2015, Jan 2015,
+       Lisbon, Portugal. 2015,
+       <10.5220/0005209202710278>. <hal-01168816>
+       https://hal.archives-ouvertes.fr/hal-01168816
+
+    """
+    # TODO: support DiGraph
+
+    import numpy as np
+    from scipy.optimize import linear_sum_assignment
+
+    class CostMatrix:
+        def __init__(self, C, lsa_row_ind, lsa_col_ind, ls):
+            #assert C.shape[0] == len(lsa_row_ind)
+            #assert C.shape[1] == len(lsa_col_ind)
+            #assert len(lsa_row_ind) == len(lsa_col_ind)
+            #assert set(lsa_row_ind) == set(range(len(lsa_row_ind)))
+            #assert set(lsa_col_ind) == set(range(len(lsa_col_ind)))
+            #assert ls == C[lsa_row_ind, lsa_col_ind].sum()
+            self.C = C
+            self.lsa_row_ind = lsa_row_ind
+            self.lsa_col_ind = lsa_col_ind
+            self.ls = ls
+
+    def make_CostMatrix(C, m, n):
+        #assert(C.shape == (m + n, m + n))
+        lsa_row_ind, lsa_col_ind = linear_sum_assignment(C)
+
+        # Fixup dummy assignments:
+        # each substitution i<->j should have dummy assignment m+j<->n+i
+        # NOTE: fast reduce of Cv relies on it
+        #assert len(lsa_row_ind) == len(lsa_col_ind)
+        indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
+        subst_ind = list(k for k, i, j in indexes if i < m and j < n)
+        indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
+        dummy_ind = list(k for k, i, j in indexes if i >= m and j >= n)
+        #assert len(subst_ind) == len(dummy_ind)
+        lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m
+        lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n
+
+        return CostMatrix(C, lsa_row_ind, lsa_col_ind,
+                          C[lsa_row_ind, lsa_col_ind].sum())
+
+    def extract_C(C, i, j, m, n):
+        #assert(C.shape == (m + n, m + n))
+        row_ind = [k in i or k - m in j for k in range(m + n)]
+        col_ind = [k in j or k - n in i for k in range(m + n)]
+        return C[row_ind, :][:, col_ind]
+
+    def reduce_C(C, i, j, m, n):
+        #assert(C.shape == (m + n, m + n))
+        row_ind = [k not in i and k - m not in j for k in range(m + n)]
+        col_ind = [k not in j and k - n not in i for k in range(m + n)]
+        return C[row_ind, :][:, col_ind]
+
+    def reduce_ind(ind, i):
+        #assert set(ind) == set(range(len(ind)))
+        rind = ind[[k not in i for k in ind]]
+        for k in set(i):
+            rind[rind >= k] -= 1
+        return rind
+
+    def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=[]):
+        """
+        Parameters:
+            u, v: matched vertices, u=None or v=None for
+               deletion/insertion
+            pending_g, pending_h: lists of edges not yet mapped
+            Ce: CostMatrix of pending edge mappings
+            matched_uv: partial vertex edit path
+                list of tuples (u, v) of previously matched vertex
+                    mappings u<->v, u=None or v=None for
+                    deletion/insertion
+
+        Returns:
+            list of (i, j): indices of edge mappings g<->h
+            localCe: local CostMatrix of edge mappings
+                (basically submatrix of Ce at cross of rows i, cols j)
+        """
+        M = len(pending_g)
+        N = len(pending_h)
+        #assert Ce.C.shape == (M + N, M + N)
+
+        g_ind = [i for i in range(M) if pending_g[i][:2] == (u, u) or
+                 any(pending_g[i][:2] in ((p, u), (u, p))
+                     for p, q in matched_uv)]
+        h_ind = [j for j in range(N) if pending_h[j][:2] == (v, v) or
+                 any(pending_h[j][:2] in ((q, v), (v, q))
+                     for p, q in matched_uv)]
+        m = len(g_ind)
+        n = len(h_ind)
+
+        if m or n:
+            C = extract_C(Ce.C, g_ind, h_ind, M, N)
+            #assert C.shape == (m + n, m + n)
+
+            # Forbid structurally invalid matches
+            # NOTE: inf remembered from Ce construction
+            for k, i in zip(range(m), g_ind):
+                g = pending_g[i][:2]
+                for l, j in zip(range(n), h_ind):
+                    h = pending_h[j][:2]
+                    if nx.is_directed(G1) or nx.is_directed(G2):
+                        if any(g == (p, u) and h == (q, v) or
+                               g == (u, p) and h == (v, q)
+                               for p, q in matched_uv):
+                            continue
+                    else:
+                        if any(g in ((p, u), (u, p)) and h in ((q, v), (v, q))
+                               for p, q in matched_uv):
+                            continue
+                    if g == (u, u):
+                        continue
+                    if h == (v, v):
+                        continue
+                    C[k, l] = inf
+
+            localCe = make_CostMatrix(C, m, n)
+            ij = list((g_ind[k] if k < m else M + h_ind[l],
+                       h_ind[l] if l < n else N + g_ind[k])
+                      for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind)
+                      if k < m or l < n)
+
+        else:
+            ij = []
+            localCe = CostMatrix(np.empty((0, 0)), [], [], 0)
+
+        return ij, localCe
+
+    def reduce_Ce(Ce, ij, m, n):
+        if len(ij):
+            i, j = zip(*ij)
+            m_i = m - sum(1 for t in i if t < m)
+            n_j = n - sum(1 for t in j if t < n)
+            return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j)
+        else:
+            return Ce
+
+    def get_edit_ops(matched_uv, pending_u, pending_v, Cv,
+                     pending_g, pending_h, Ce, matched_cost):
+        """
+        Parameters:
+            matched_uv: partial vertex edit path
+                list of tuples (u, v) of vertex mappings u<->v,
+                u=None or v=None for deletion/insertion
+            pending_u, pending_v: lists of vertices not yet mapped
+            Cv: CostMatrix of pending vertex mappings
+            pending_g, pending_h: lists of edges not yet mapped
+            Ce: CostMatrix of pending edge mappings
+            matched_cost: cost of partial edit path
+
+        Returns:
+            sequence of
+                (i, j): indices of vertex mapping u<->v
+                Cv_ij: reduced CostMatrix of pending vertex mappings
+                    (basically Cv with row i, col j removed)
+                list of (x, y): indices of edge mappings g<->h
+                Ce_xy: reduced CostMatrix of pending edge mappings
+                    (basically Ce with rows x, cols y removed)
+                cost: total cost of edit operation
+            NOTE: most promising ops first
+        """
+        m = len(pending_u)
+        n = len(pending_v)
+        #assert Cv.C.shape == (m + n, m + n)
+
+        # 1) a vertex mapping from optimal linear sum assignment
+        i, j = min((k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind)
+                   if k < m or l < n)
+        xy, localCe = match_edges(pending_u[i] if i < m else None,
+                                  pending_v[j] if j < n else None,
+                                  pending_g, pending_h, Ce, matched_uv)
+        Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
+        #assert Ce.ls <= localCe.ls + Ce_xy.ls
+        if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls):
+            pass
+        else:
+            # get reduced Cv efficiently
+            Cv_ij = CostMatrix(reduce_C(Cv.C, (i,), (j,), m, n),
+                               reduce_ind(Cv.lsa_row_ind, (i, m + j)),
+                               reduce_ind(Cv.lsa_col_ind, (j, n + i)),
+                               Cv.ls - Cv.C[i, j])
+            yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls
+
+        # 2) other candidates, sorted by lower-bound cost estimate
+        other = list()
+        fixed_i, fixed_j = i, j
+        if m <= n:
+            candidates = ((t, fixed_j) for t in range(m + n)
+                          if t != fixed_i and (t < m or t == m + fixed_j))
+        else:
+            candidates = ((fixed_i, t) for t in range(m + n)
+                          if t != fixed_j and (t < n or t == n + fixed_i))
+        for i, j in candidates:
+            if prune(matched_cost + Cv.C[i, j] + Ce.ls):
+                continue
+            Cv_ij = make_CostMatrix(reduce_C(Cv.C, (i,), (j,), m, n),
+                                    m - 1 if i < m else m,
+                                    n - 1 if j < n else n)
+            #assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls
+            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls):
+                continue
+            xy, localCe = match_edges(pending_u[i] if i < m else None,
+                                      pending_v[j] if j < n else None,
+                                      pending_g, pending_h, Ce, matched_uv)
+            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls):
+                continue
+            Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
+            #assert Ce.ls <= localCe.ls + Ce_xy.ls
+            if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls +
+                     Ce_xy.ls):
+                continue
+            other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls))
+
+        # yield from
+        for t in sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls):
+            yield t
+
+    def get_edit_paths(matched_uv, pending_u, pending_v, Cv,
+                       matched_gh, pending_g, pending_h, Ce, matched_cost):
+        """
+        Parameters:
+            matched_uv: partial vertex edit path
+                list of tuples (u, v) of vertex mappings u<->v,
+                u=None or v=None for deletion/insertion
+            pending_u, pending_v: lists of vertices not yet mapped
+            Cv: CostMatrix of pending vertex mappings
+            matched_gh: partial edge edit path
+                list of tuples (g, h) of edge mappings g<->h,
+                g=None or h=None for deletion/insertion
+            pending_g, pending_h: lists of edges not yet mapped
+            Ce: CostMatrix of pending edge mappings
+            matched_cost: cost of partial edit path
+
+        Returns:
+            sequence of (vertex_path, edge_path, cost)
+                vertex_path: complete vertex edit path
+                    list of tuples (u, v) of vertex mappings u<->v,
+                    u=None or v=None for deletion/insertion
+                edge_path: complete edge edit path
+                    list of tuples (g, h) of edge mappings g<->h,
+                    g=None or h=None for deletion/insertion
+                cost: total cost of edit path
+            NOTE: path costs are non-increasing
+        """
+        #debug_print('matched-uv:', matched_uv)
+        #debug_print('matched-gh:', matched_gh)
+        #debug_print('matched-cost:', matched_cost)
+        #debug_print('pending-u:', pending_u)
+        #debug_print('pending-v:', pending_v)
+        #debug_print(Cv.C)
+        #assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u))
+        #assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v))
+        #debug_print('pending-g:', pending_g)
+        #debug_print('pending-h:', pending_h)
+        #debug_print(Ce.C)
+        #assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g))
+        #assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h))
+        #debug_print()
+
+        if prune(matched_cost + Cv.ls + Ce.ls):
+            return
+
+        if not max(len(pending_u), len(pending_v)):
+            #assert not len(pending_g)
+            #assert not len(pending_h)
+            # path completed!
+            #assert matched_cost <= maxcost.value
+            maxcost.value = min(maxcost.value, matched_cost)
+            yield matched_uv, matched_gh, matched_cost
+
+        else:
+            edit_ops = get_edit_ops(matched_uv, pending_u, pending_v, Cv,
+                                    pending_g, pending_h, Ce, matched_cost)
+            for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops:
+                i, j = ij
+                #assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost
+                if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls):
+                    continue
+
+                # dive deeper
+                u = pending_u.pop(i) if i < len(pending_u) else None
+                v = pending_v.pop(j) if j < len(pending_v) else None
+                matched_uv.append((u, v))
+                for x, y in xy:
+                    len_g = len(pending_g)
+                    len_h = len(pending_h)
+                    matched_gh.append((pending_g[x] if x < len_g else None,
+                                       pending_h[y] if y < len_h else None))
+                sortedx = list(sorted(x for x, y in xy))
+                sortedy = list(sorted(y for x, y in xy))
+                G = list((pending_g.pop(x) if x < len(pending_g) else None)
+                         for x in reversed(sortedx))
+                H = list((pending_h.pop(y) if y < len(pending_h) else None)
+                         for y in reversed(sortedy))
+
+                # yield from
+                for t in get_edit_paths(matched_uv, pending_u, pending_v,
+                                        Cv_ij,
+                                        matched_gh, pending_g, pending_h,
+                                        Ce_xy,
+                                        matched_cost + edit_cost):
+                    yield t
+
+                # backtrack
+                if u is not None:
+                    pending_u.insert(i, u)
+                if v is not None:
+                    pending_v.insert(j, v)
+                matched_uv.pop()
+                for x, g in zip(sortedx, reversed(G)):
+                    if g is not None:
+                        pending_g.insert(x, g)
+                for y, h in zip(sortedy, reversed(H)):
+                    if h is not None:
+                        pending_h.insert(y, h)
+                for t in xy:
+                    matched_gh.pop()
+
+    # Initialization
+
+    pending_u = list(G1.nodes)
+    pending_v = list(G2.nodes)
+
+    # cost matrix of vertex mappings
+    m = len(pending_u)
+    n = len(pending_v)
+    C = np.zeros((m + n, m + n))
+    if node_subst_cost:
+        C[0:m, 0:n] = np.array([node_subst_cost(G1.nodes[u], G2.nodes[v])
+                                for u in pending_u for v in pending_v]
+                               ).reshape(m, n)
+    elif node_match:
+        C[0:m, 0:n] = np.array([1 - int(node_match(G1.nodes[u], G2.nodes[v]))
+                                for u in pending_u for v in pending_v]
+                               ).reshape(m, n)
+    else:
+        # all zeroes
+        pass
+    #assert not min(m, n) or C[0:m, 0:n].min() >= 0
+    if node_del_cost:
+        del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u]
+    else:
+        del_costs = [1] * len(pending_u)
+    #assert not m or min(del_costs) >= 0
+    if node_ins_cost:
+        ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v]
+    else:
+        ins_costs = [1] * len(pending_v)
+    #assert not n or min(ins_costs) >= 0
+    inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
+    C[0:m, n:n + m] = np.array([del_costs[i] if i == j else inf
+                                for i in range(m) for j in range(m)]
+                               ).reshape(m, m)
+    C[m:m + n, 0:n] = np.array([ins_costs[i] if i == j else inf
+                                for i in range(n) for j in range(n)]
+                               ).reshape(n, n)
+    Cv = make_CostMatrix(C, m, n)
+    #debug_print('Cv: {} x {}'.format(m, n))
+    #debug_print(Cv.C)
+
+    pending_g = list(G1.edges)
+    pending_h = list(G2.edges)
+
+    # cost matrix of edge mappings
+    m = len(pending_g)
+    n = len(pending_h)
+    C = np.zeros((m + n, m + n))
+    if edge_subst_cost:
+        C[0:m, 0:n] = np.array([edge_subst_cost(G1.edges[g], G2.edges[h])
+                                for g in pending_g for h in pending_h]
+                               ).reshape(m, n)
+    elif edge_match:
+        C[0:m, 0:n] = np.array([1 - int(edge_match(G1.edges[g], G2.edges[h]))
+                                for g in pending_g for h in pending_h]
+                               ).reshape(m, n)
+    else:
+        # all zeroes
+        pass
+    #assert not min(m, n) or C[0:m, 0:n].min() >= 0
+    if edge_del_cost:
+        del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g]
+    else:
+        del_costs = [1] * len(pending_g)
+    #assert not m or min(del_costs) >= 0
+    if edge_ins_cost:
+        ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h]
+    else:
+        ins_costs = [1] * len(pending_h)
+    #assert not n or min(ins_costs) >= 0
+    inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
+    C[0:m, n:n + m] = np.array([del_costs[i] if i == j else inf
+                                for i in range(m) for j in range(m)]
+                               ).reshape(m, m)
+    C[m:m + n, 0:n] = np.array([ins_costs[i] if i == j else inf
+                                for i in range(n) for j in range(n)]
+                               ).reshape(n, n)
+    Ce = make_CostMatrix(C, m, n)
+    #debug_print('Ce: {} x {}'.format(m, n))
+    #debug_print(Ce.C)
+    #debug_print()
+
+    class MaxCost:
+        def __init__(self):
+            # initial upper-bound estimate
+            # NOTE: should work for empty graph
+            self.value = Cv.C.sum() + Ce.C.sum() + 1
+    maxcost = MaxCost()
+
+    def prune(cost):
+        if upper_bound is not None:
+            if cost > upper_bound:
+                return True
+        if cost > maxcost.value:
+            return True
+        elif strictly_decreasing and cost >= maxcost.value:
+            return True
+
+    # Now go!
+
+    for vertex_path, edge_path, cost in \
+        get_edit_paths([], pending_u, pending_v, Cv,
+                       [], pending_g, pending_h, Ce, 0):
+        #assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None)
+        #assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None)
+        #assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None)
+        #assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None)
+        #print(vertex_path, edge_path, cost, file = sys.stderr)
+        #assert cost == maxcost.value
+        yield list(vertex_path), list(edge_path), cost
+
+
+def _is_close(d1, d2, atolerance=0, rtolerance=0):
+    """Determines whether two adjacency matrices are within
+    a provided tolerance.
+    
+    Parameters
+    ----------
+    d1 : dict
+        Adjacency dictionary
+    
+    d2 : dict
+        Adjacency dictionary
+    
+    atolerance : float
+        Some scalar tolerance value to determine closeness
+    
+    rtolerance : float
+        A scalar tolerance value that will be some proportion
+        of ``d2``'s value
+    
+    Returns
+    -------
+    closeness : bool
+        If all of the nodes within ``d1`` and ``d2`` are within
+        a predefined tolerance, they are considered "close" and
+        this method will return True. Otherwise, this method will
+        return False.
+    
+    """
+    # Pre-condition: d1 and d2 have the same keys at each level if they
+    # are dictionaries.
+    if not isinstance(d1, dict) and not isinstance(d2, dict):
+        return abs(d1 - d2) <= atolerance + rtolerance * abs(d2)
+    return all(all(_is_close(d1[u][v], d2[u][v]) for v in d1[u]) for u in d1)
+
+
+def simrank_similarity(G, source=None, target=None, importance_factor=0.9,
+                       max_iterations=100, tolerance=1e-4):
+    """Returns the SimRank similarity of nodes in the graph ``G``.
+
+    SimRank is a similarity metric that says "two objects are considered
+    to be similar if they are referenced by similar objects." [1]_.
+    
+    The pseudo-code definition from the paper is::
+
+        def simrank(G, u, v):
+            in_neighbors_u = G.predecessors(u)
+            in_neighbors_v = G.predecessors(v)
+            scale = C / (len(in_neighbors_u) * len(in_neighbors_v))
+            return scale * sum(simrank(G, w, x)
+                               for w, x in product(in_neighbors_u,
+                                                   in_neighbors_v))
+    
+    where ``G`` is the graph, ``u`` is the source, ``v`` is the target,
+    and ``C`` is a float decay or importance factor between 0 and 1.
+    
+    The SimRank algorithm for determining node similarity is defined in
+    [2]_.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        A NetworkX graph
+
+    source : node
+        If this is specified, the returned dictionary maps each node
+        ``v`` in the graph to the similarity between ``source`` and
+        ``v``.
+
+    target : node
+        If both ``source`` and ``target`` are specified, the similarity
+        value between ``source`` and ``target`` is returned. If
+        ``target`` is specified but ``source`` is not, this argument is
+        ignored.
+
+    importance_factor : float
+        The relative importance of indirect neighbors with respect to
+        direct neighbors.
+
+    max_iterations : integer
+        Maximum number of iterations.
+
+    tolerance : float
+        Error tolerance used to check convergence. When an iteration of
+        the algorithm finds that no similarity value changes more than
+        this amount, the algorithm halts.
+
+    Returns
+    -------
+    similarity : dictionary or float
+        If ``source`` and ``target`` are both ``None``, this returns a
+        dictionary of dictionaries, where keys are node pairs and value
+        are similarity of the pair of nodes.
+
+        If ``source`` is not ``None`` but ``target`` is, this returns a
+        dictionary mapping node to the similarity of ``source`` and that
+        node.
+
+        If neither ``source`` nor ``target`` is ``None``, this returns
+        the similarity value for the given pair of nodes.
+
+    Examples
+    --------
+    If the nodes of the graph are numbered from zero to *n - 1*, where *n*
+    is the number of nodes in the graph, you can create a SimRank matrix
+    from the return value of this function where the node numbers are
+    the row and column indices of the matrix::
+
+        >>> import networkx as nx
+        >>> from numpy import array
+        >>> G = nx.cycle_graph(4)
+        >>> sim = nx.simrank_similarity(G)
+        >>> lol = [[sim[u][v] for v in sorted(sim[u])] for u in sorted(sim)]
+        >>> sim_array = array(lol)
+
+    References
+    ----------
+    .. [1] https://en.wikipedia.org/wiki/SimRank
+    .. [2] G. Jeh and J. Widom.
+           "SimRank: a measure of structural-context similarity",
+           In KDD'02: Proceedings of the Eighth ACM SIGKDD
+           International Conference on Knowledge Discovery and Data Mining,
+           pp. 538--543. ACM Press, 2002.
+    """
+    prevsim = None
+
+    # build up our similarity adjacency dictionary output
+    newsim = {u: {v: 1 if u == v else 0 for v in G} for u in G}
+
+    # These functions compute the update to the similarity value of the nodes
+    # `u` and `v` with respect to the previous similarity values.
+    avg_sim = lambda s: sum(newsim[w][x] for (w, x) in s) / len(s) if s else 0.0
+    sim = lambda u, v: importance_factor * avg_sim(list(product(G[u], G[v])))
+
+    for _ in range(max_iterations):
+        if prevsim and _is_close(prevsim, newsim, tolerance):
+            break
+        prevsim = newsim
+        newsim = {u: {v: sim(u, v) if u is not v else 1
+                      for v in newsim[u]} for u in newsim}
+
+    if source is not None and target is not None:
+        return newsim[source][target]
+    if source is not None:
+        return newsim[source]
+    return newsim
+
+
+def simrank_similarity_numpy(G, source=None, target=None, importance_factor=0.9,
+                             max_iterations=100, tolerance=1e-4):
+    """Calculate SimRank of nodes in ``G`` using matrices with ``numpy``.
+
+    The SimRank algorithm for determining node similarity is defined in
+    [1]_.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        A NetworkX graph
+
+    source : node
+        If this is specified, the returned dictionary maps each node
+        ``v`` in the graph to the similarity between ``source`` and
+        ``v``.
+
+    target : node
+        If both ``source`` and ``target`` are specified, the similarity
+        value between ``source`` and ``target`` is returned. If
+        ``target`` is specified but ``source`` is not, this argument is
+        ignored.
+
+    importance_factor : float
+        The relative importance of indirect neighbors with respect to
+        direct neighbors.
+
+    max_iterations : integer
+        Maximum number of iterations.
+
+    tolerance : float
+        Error tolerance used to check convergence. When an iteration of
+        the algorithm finds that no similarity value changes more than
+        this amount, the algorithm halts.
+
+    Returns
+    -------
+    similarity : dictionary or float
+        If ``source`` and ``target`` are both ``None``, this returns a
+        dictionary of dictionaries, where keys are node pairs and value
+        are similarity of the pair of nodes.
+
+        If ``source`` is not ``None`` but ``target`` is, this returns a
+        dictionary mapping node to the similarity of ``source`` and that
+        node.
+
+        If neither ``source`` nor ``target`` is ``None``, this returns
+        the similarity value for the given pair of nodes.
+
+    Examples
+    --------
+        >>> import networkx as nx
+        >>> from numpy import array
+        >>> G = nx.cycle_graph(4)
+        >>> sim = nx.simrank_similarity_numpy(G)
+
+    References
+    ----------
+    .. [1] G. Jeh and J. Widom.
+           "SimRank: a measure of structural-context similarity",
+           In KDD'02: Proceedings of the Eighth ACM SIGKDD
+           International Conference on Knowledge Discovery and Data Mining,
+           pp. 538--543. ACM Press, 2002.
+    """
+    # This algorithm follows roughly
+    #
+    #     S = max{C * (A.T * S * A), I}
+    #
+    # where C is the importance factor, A is the column normalized
+    # adjacency matrix, and I is the identity matrix.
+    import numpy as np
+    adjacency_matrix = nx.to_numpy_array(G)
+
+    # column-normalize the ``adjacency_matrix``
+    adjacency_matrix /= adjacency_matrix.sum(axis=0)
+
+    newsim = np.eye(adjacency_matrix.shape[0], dtype=np.float64)
+    for _ in range(max_iterations):
+        prevsim = np.copy(newsim)
+        newsim = importance_factor * np.matmul(
+            np.matmul(adjacency_matrix.T, prevsim), adjacency_matrix)
+        np.fill_diagonal(newsim, 1.0)
+
+        if np.allclose(prevsim, newsim, atol=tolerance):
+            break
+
+    if source is not None and target is not None:
+        return newsim[source, target]
+    if source is not None:
+        return newsim[source]
+    return newsim
+
+
+# fixture for pytest
+def setup_module(module):
+    import pytest
+    numpy = pytest.importorskip('numpy')
+    scipy = pytest.importorskip('scipy')