Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/algorithms/sparsifiers.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/algorithms/sparsifiers.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,291 @@ +# Copyright (C) 2018 +# Robert Gmyr <robert@gmyr.net> +# All rights reserved. +# BSD license. +"""Functions for computing sparsifiers of graphs.""" +import math +import networkx as nx +from networkx.utils import not_implemented_for, py_random_state + +__all__ = ['spanner'] + + +@py_random_state(3) +@not_implemented_for('directed') +@not_implemented_for('multigraph') +def spanner(G, stretch, weight=None, seed=None): + """Returns a spanner of the given graph with the given stretch. + + A spanner of a graph G = (V, E) with stretch t is a subgraph + H = (V, E_S) such that E_S is a subset of E and the distance between + any pair of nodes in H is at most t times the distance between the + nodes in G. + + Parameters + ---------- + G : NetworkX graph + An undirected simple graph. + + stretch : float + The stretch of the spanner. + + weight : object + The edge attribute to use as distance. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + NetworkX graph + A spanner of the given graph with the given stretch. + + Raises + ------ + ValueError + If a stretch less than 1 is given. + + Notes + ----- + This function implements the spanner algorithm by Baswana and Sen, + see [1]. + + This algorithm is a randomized las vegas algorithm: The expected + running time is O(km) where k = (stretch + 1) // 2 and m is the + number of edges in G. The returned graph is always a spanner of the + given graph with the specified stretch. For weighted graphs the + number of edges in the spanner is O(k * n^(1 + 1 / k)) where k is + defined as above and n is the number of nodes in G. For unweighted + graphs the number of edges is O(n^(1 + 1 / k) + kn). + + References + ---------- + [1] S. Baswana, S. Sen. A Simple and Linear Time Randomized + Algorithm for Computing Sparse Spanners in Weighted Graphs. + Random Struct. Algorithms 30(4): 532-563 (2007). + """ + if stretch < 1: + raise ValueError('stretch must be at least 1') + + k = (stretch + 1) // 2 + + # initialize spanner H with empty edge set + H = nx.empty_graph() + H.add_nodes_from(G.nodes) + + # phase 1: forming the clusters + # the residual graph has V' from the paper as its node set + # and E' from the paper as its edge set + residual_graph = _setup_residual_graph(G, weight) + # clustering is a dictionary that maps nodes in a cluster to the + # cluster center + clustering = {v: v for v in G.nodes} + sample_prob = math.pow(G.number_of_nodes(), - 1 / k) + size_limit = 2 * math.pow(G.number_of_nodes(), 1 + 1 / k) + + i = 0 + while i < k - 1: + # step 1: sample centers + sampled_centers = set() + for center in set(clustering.values()): + if seed.random() < sample_prob: + sampled_centers.add(center) + + # combined loop for steps 2 and 3 + edges_to_add = set() + edges_to_remove = set() + new_clustering = {} + for v in residual_graph.nodes: + if clustering[v] in sampled_centers: + continue + + # step 2: find neighboring (sampled) clusters and + # lightest edges to them + lightest_edge_neighbor, lightest_edge_weight =\ + _lightest_edge_dicts(residual_graph, clustering, v) + neighboring_sampled_centers =\ + set(lightest_edge_weight.keys()) & sampled_centers + + # step 3: add edges to spanner + if not neighboring_sampled_centers: + # connect to each neighboring center via lightest edge + for neighbor in lightest_edge_neighbor.values(): + edges_to_add.add((v, neighbor)) + # remove all incident edges + for neighbor in residual_graph.adj[v]: + edges_to_remove.add((v, neighbor)) + + else: # there is a neighboring sampled center + closest_center = min(neighboring_sampled_centers, + key=lightest_edge_weight.get) + closest_center_weight = lightest_edge_weight[closest_center] + closest_center_neighbor =\ + lightest_edge_neighbor[closest_center] + + edges_to_add.add((v, closest_center_neighbor)) + new_clustering[v] = closest_center + + # connect to centers with edge weight less than + # closest_center_weight + for center, edge_weight in lightest_edge_weight.items(): + if edge_weight < closest_center_weight: + neighbor = lightest_edge_neighbor[center] + edges_to_add.add((v, neighbor)) + + # remove edges to centers with edge weight less than + # closest_center_weight + for neighbor in residual_graph.adj[v]: + neighbor_cluster = clustering[neighbor] + neighbor_weight = lightest_edge_weight[neighbor_cluster] + if neighbor_cluster == closest_center or neighbor_weight < closest_center_weight: + edges_to_remove.add((v, neighbor)) + + # check whether iteration added too many edges to spanner, + # if so repeat + if len(edges_to_add) > size_limit: + # an iteration is repeated O(1) times on expectation + continue + + # iteration succeeded + i = i + 1 + + # actually add edges to spanner + for u, v in edges_to_add: + _add_edge_to_spanner(H, residual_graph, u, v, weight) + + # actually delete edges from residual graph + residual_graph.remove_edges_from(edges_to_remove) + + # copy old clustering data to new_clustering + for node, center in clustering.items(): + if center in sampled_centers: + new_clustering[node] = center + clustering = new_clustering + + # step 4: remove intra-cluster edges + for u in residual_graph.nodes: + for v in list(residual_graph.adj[u]): + if clustering[u] == clustering[v]: + residual_graph.remove_edge(u, v) + + # update residual graph node set + for v in list(residual_graph.nodes): + if v not in clustering: + residual_graph.remove_node(v) + + # phase 2: vertex-cluster joining + for v in residual_graph.nodes: + lightest_edge_neighbor, _ =\ + _lightest_edge_dicts(residual_graph, clustering, v) + for neighbor in lightest_edge_neighbor.values(): + _add_edge_to_spanner(H, residual_graph, v, neighbor, weight) + + return H + + +def _setup_residual_graph(G, weight): + """Setup residual graph as a copy of G with unique edges weights. + + The node set of the residual graph corresponds to the set V' from + the Baswana-Sen paper and the edge set corresponds to the set E' + from the paper. + + This function associates distinct weights to the edges of the + residual graph (even for unweighted input graphs), as required by + the algorithm. + + Parameters + ---------- + G : NetworkX graph + An undirected simple graph. + + weight : object + The edge attribute to use as distance. + + Returns + ------- + NetworkX graph + The residual graph used for the Baswana-Sen algorithm. + """ + residual_graph = G.copy() + + # establish unique edge weights, even for unweighted graphs + for u, v in G.edges(): + if not weight: + residual_graph[u][v]['weight'] = (id(u), id(v)) + else: + residual_graph[u][v]['weight'] = (G[u][v][weight], id(u), id(v)) + + return residual_graph + + +def _lightest_edge_dicts(residual_graph, clustering, node): + """Find the lightest edge to each cluster. + + Searches for the minimum-weight edge to each cluster adjacent to + the given node. + + Parameters + ---------- + residual_graph : NetworkX graph + The residual graph used by the Baswana-Sen algorithm. + + clustering : dictionary + The current clustering of the nodes. + + node : node + The node from which the search originates. + + Returns + ------- + lightest_edge_neighbor, lightest_edge_weight : dictionary, dictionary + lightest_edge_neighbor is a dictionary that maps a center C to + a node v in the corresponding cluster such that the edge from + the given node to v is the lightest edge from the given node to + any node in cluster. lightest_edge_weight maps a center C to the + weight of the aforementioned edge. + + Notes + ----- + If a cluster has no node that is adjacent to the given node in the + residual graph then the center of the cluster is not a key in the + returned dictionaries. + """ + lightest_edge_neighbor = {} + lightest_edge_weight = {} + for neighbor in residual_graph.adj[node]: + neighbor_center = clustering[neighbor] + weight = residual_graph[node][neighbor]['weight'] + if neighbor_center not in lightest_edge_weight or\ + weight < lightest_edge_weight[neighbor_center]: + lightest_edge_neighbor[neighbor_center] = neighbor + lightest_edge_weight[neighbor_center] = weight + return lightest_edge_neighbor, lightest_edge_weight + + +def _add_edge_to_spanner(H, residual_graph, u, v, weight): + """Add the edge {u, v} to the spanner H and take weight from + the residual graph. + + Parameters + ---------- + H : NetworkX graph + The spanner under construction. + + residual_graph : NetworkX graph + The residual graph used by the Baswana-Sen algorithm. The weight + for the edge is taken from this graph. + + u : node + One endpoint of the edge. + + v : node + The other endpoint of the edge. + + weight : object + The edge attribute to use as distance. + """ + H.add_edge(u, v) + if weight: + H[u][v][weight] = residual_graph[u][v]['weight'][0]