Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/algorithms/tournament.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/algorithms/tournament.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,355 @@ +# tournament.py - functions for tournament graphs +# +# Copyright 2015 NetworkX developers. +# +# This file is part of NetworkX. +# +# NetworkX is distributed under a BSD license; see LICENSE.txt for more +# information. +"""Functions concerning tournament graphs. + +A `tournament graph`_ is a complete oriented graph. In other words, it +is a directed graph in which there is exactly one directed edge joining +each pair of distinct nodes. For each function in this module that +accepts a graph as input, you must provide a tournament graph. The +responsibility is on the caller to ensure that the graph is a tournament +graph. + +To access the functions in this module, you must access them through the +:mod:`networkx.algorithms.tournament` module:: + + >>> import networkx as nx + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + >>> tournament.is_tournament(G) + True + +.. _tournament graph: https://en.wikipedia.org/wiki/Tournament_%28graph_theory%29 + +""" +from itertools import combinations + +import networkx as nx +from networkx.algorithms.simple_paths import is_simple_path as is_path +from networkx.utils import arbitrary_element +from networkx.utils import not_implemented_for +from networkx.utils import py_random_state + +__all__ = ['hamiltonian_path', 'is_reachable', 'is_strongly_connected', + 'is_tournament', 'random_tournament', 'score_sequence'] + + +def index_satisfying(iterable, condition): + """Returns the index of the first element in `iterable` that + satisfies the given condition. + + If no such element is found (that is, when the iterable is + exhausted), this returns the length of the iterable (that is, one + greater than the last index of the iterable). + + `iterable` must not be empty. If `iterable` is empty, this + function raises :exc:`ValueError`. + + """ + # Pre-condition: iterable must not be empty. + for i, x in enumerate(iterable): + if condition(x): + return i + # If we reach the end of the iterable without finding an element + # that satisfies the condition, return the length of the iterable, + # which is one greater than the index of its last element. If the + # iterable was empty, `i` will not be defined, so we raise an + # exception. + try: + return i + 1 + except NameError: + raise ValueError('iterable must be non-empty') + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def is_tournament(G): + """Returns True if and only if `G` is a tournament. + + A tournament is a directed graph, with neither self-loops nor + multi-edges, in which there is exactly one directed edge joining + each pair of distinct nodes. + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + Returns + ------- + bool + Whether the given graph is a tournament graph. + + Notes + ----- + Some definitions require a self-loop on each node, but that is not + the convention used here. + + """ + # In a tournament, there is exactly one directed edge joining each pair. + return (all((v in G[u]) ^ (u in G[v]) for u, v in combinations(G, 2)) and + nx.number_of_selfloops(G) == 0) + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def hamiltonian_path(G): + """Returns a Hamiltonian path in the given tournament graph. + + Each tournament has a Hamiltonian path. If furthermore, the + tournament is strongly connected, then the returned Hamiltonian path + is a Hamiltonian cycle (by joining the endpoints of the path). + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + Returns + ------- + bool + Whether the given graph is a tournament graph. + + Notes + ----- + This is a recursive implementation with an asymptotic running time + of $O(n^2)$, ignoring multiplicative polylogarithmic factors, where + $n$ is the number of nodes in the graph. + + """ + if len(G) == 0: + return [] + if len(G) == 1: + return [arbitrary_element(G)] + v = arbitrary_element(G) + hampath = hamiltonian_path(G.subgraph(set(G) - {v})) + # Get the index of the first node in the path that does *not* have + # an edge to `v`, then insert `v` before that node. + index = index_satisfying(hampath, lambda u: v not in G[u]) + hampath.insert(index, v) + return hampath + + +@py_random_state(1) +def random_tournament(n, seed=None): + r"""Returns a random tournament graph on `n` nodes. + + Parameters + ---------- + n : int + The number of nodes in the returned graph. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + bool + Whether the given graph is a tournament graph. + + Notes + ----- + This algorithm adds, for each pair of distinct nodes, an edge with + uniformly random orientation. In other words, `\binom{n}{2}` flips + of an unbiased coin decide the orientations of the edges in the + graph. + + """ + # Flip an unbiased coin for each pair of distinct nodes. + coins = (seed.random() for i in range((n * (n - 1)) // 2)) + pairs = combinations(range(n), 2) + edges = ((u, v) if r < 0.5 else (v, u) for (u, v), r in zip(pairs, coins)) + return nx.DiGraph(edges) + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def score_sequence(G): + """Returns the score sequence for the given tournament graph. + + The score sequence is the sorted list of the out-degrees of the + nodes of the graph. + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + Returns + ------- + list + A sorted list of the out-degrees of the nodes of `G`. + + """ + return sorted(d for v, d in G.out_degree()) + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def tournament_matrix(G): + r"""Returns the tournament matrix for the given tournament graph. + + This function requires SciPy. + + The *tournament matrix* of a tournament graph with edge set *E* is + the matrix *T* defined by + + .. math:: + + T_{i j} = + \begin{cases} + +1 & \text{if } (i, j) \in E \\ + -1 & \text{if } (j, i) \in E \\ + 0 & \text{if } i == j. + \end{cases} + + An equivalent definition is `T = A - A^T`, where *A* is the + adjacency matrix of the graph `G`. + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + Returns + ------- + SciPy sparse matrix + The tournament matrix of the tournament graph `G`. + + Raises + ------ + ImportError + If SciPy is not available. + + """ + A = nx.adjacency_matrix(G) + return A - A.T + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def is_reachable(G, s, t): + """Decides whether there is a path from `s` to `t` in the + tournament. + + This function is more theoretically efficient than the reachability + checks than the shortest path algorithms in + :mod:`networkx.algorithms.shortest_paths`. + + The given graph **must** be a tournament, otherwise this function's + behavior is undefined. + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + s : node + A node in the graph. + + t : node + A node in the graph. + + Returns + ------- + bool + Whether there is a path from `s` to `t` in `G`. + + Notes + ----- + Although this function is more theoretically efficient than the + generic shortest path functions, a speedup requires the use of + parallelism. Though it may in the future, the current implementation + does not use parallelism, thus you may not see much of a speedup. + + This algorithm comes from [1]. + + References + ---------- + .. [1] Tantau, Till. + "A note on the complexity of the reachability problem for + tournaments." + *Electronic Colloquium on Computational Complexity*. 2001. + <http://eccc.hpi-web.de/report/2001/092/> + + """ + + def two_neighborhood(G, v): + """Returns the set of nodes at distance at most two from `v`. + + `G` must be a graph and `v` a node in that graph. + + The returned set includes the nodes at distance zero (that is, + the node `v` itself), the nodes at distance one (that is, the + out-neighbors of `v`), and the nodes at distance two. + + """ + # TODO This is trivially parallelizable. + return {x for x in G + if x == v or x in G[v] or + any(is_path(G, [v, z, x]) for z in G)} + + def is_closed(G, nodes): + """Decides whether the given set of nodes is closed. + + A set *S* of nodes is *closed* if for each node *u* in the graph + not in *S* and for each node *v* in *S*, there is an edge from + *u* to *v*. + + """ + # TODO This is trivially parallelizable. + return all(v in G[u] for u in set(G) - nodes for v in nodes) + + # TODO This is trivially parallelizable. + neighborhoods = [two_neighborhood(G, v) for v in G] + return all(not (is_closed(G, S) and s in S and t not in S) + for S in neighborhoods) + + +@not_implemented_for('undirected') +@not_implemented_for('multigraph') +def is_strongly_connected(G): + """Decides whether the given tournament is strongly connected. + + This function is more theoretically efficient than the + :func:`~networkx.algorithms.components.is_strongly_connected` + function. + + The given graph **must** be a tournament, otherwise this function's + behavior is undefined. + + Parameters + ---------- + G : NetworkX graph + A directed graph representing a tournament. + + Returns + ------- + bool + Whether the tournament is strongly connected. + + Notes + ----- + Although this function is more theoretically efficient than the + generic strong connectivity function, a speedup requires the use of + parallelism. Though it may in the future, the current implementation + does not use parallelism, thus you may not see much of a speedup. + + This algorithm comes from [1]. + + References + ---------- + .. [1] Tantau, Till. + "A note on the complexity of the reachability problem for + tournaments." + *Electronic Colloquium on Computational Complexity*. 2001. + <http://eccc.hpi-web.de/report/2001/092/> + + """ + # TODO This is trivially parallelizable. + return all(is_reachable(G, u, v) for u in G for v in G)