Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/classes/digraph.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/classes/digraph.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,1201 @@ +# Copyright (C) 2004-2019 by +# Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +# All rights reserved. +# BSD license. +# +# Authors: Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +"""Base class for directed graphs.""" +from copy import deepcopy + +import networkx as nx +from networkx.classes.graph import Graph +from networkx.classes.coreviews import AdjacencyView +from networkx.classes.reportviews import OutEdgeView, InEdgeView, \ + DiDegreeView, InDegreeView, OutDegreeView +from networkx.exception import NetworkXError +import networkx.convert as convert + + +class DiGraph(Graph): + """ + Base class for directed graphs. + + A DiGraph stores nodes and edges with optional data, or attributes. + + DiGraphs hold directed edges. Self loops are allowed but multiple + (parallel) edges are not. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes. By convention `None` is not used as a node. + + Edges are represented as links between nodes with optional + key/value attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, NumPy matrix + or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + Graph + MultiGraph + MultiDiGraph + OrderedDiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.DiGraph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> G.add_edge(1, 2) + + a list of edges, + + >>> G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. There are no errors when adding + nodes or edges that already exist. + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.DiGraph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time='5pm') + >>> G.add_nodes_from([3], time='2pm') + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]['room'] = 714 + >>> del G.nodes[1]['room'] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> G.add_edge(1, 2, weight=4.7 ) + >>> G.add_edges_from([(3, 4), (4, 5)], color='red') + >>> G.add_edges_from([(1, 2, {'color':'blue'}), (2, 3, {'weight':8})]) + >>> G[1][2]['weight'] = 4.7 + >>> G.edges[1, 2]['weight'] = 4 + + Warning: we protect the graph data structure by making `G.edges[1, 2]` a + read-only dict-like structure. However, you can assign to attributes + in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change + data attributes: `G.edges[1, 2]['weight'] = 4` + (For multigraphs: `MG.edges[u, v, key][name] = value`). + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n < 3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, eattr in nbrsdict.items(): + ... if 'weight' in eattr: + ... # Do something useful with the edges + ... pass + + But the edges reporting object is often more convenient: + + >>> for u, v, weight in G.edges(data='weight'): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using object-attributes and methods. + Reporting usually provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The Graph class uses a dict-of-dict-of-dict data structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information and holds + edge data keyed by neighbor. The inner dict (edge_attr_dict) represents + the edge data and holds edge attribute values keyed by attribute names. + + Each of these three dicts can be replaced in a subclass by a user defined + dict-like object. In general, the dict-like features should be + maintained but extra features can be added. To replace one of the + dicts create a new graph class by changing the class(!) variable + holding the factory for that dict-like structure. The variable names are + node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, + adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, optional (default: dict) + Factory function to be used to create the adjacency list + dict which holds edge data keyed by neighbor. + It should require no arguments and return a dict-like object + + edge_attr_dict_factory : function, optional (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherited without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + Examples + -------- + + Create a low memory graph class that effectively disallows edge + attributes by using a single attribute dict for all edges. + This reduces the memory used, but you lose edge attributes. + + >>> class ThinGraph(nx.Graph): + ... all_edge_dict = {'weight': 1} + ... def single_edge_dict(self): + ... return self.all_edge_dict + ... edge_attr_dict_factory = single_edge_dict + >>> G = ThinGraph() + >>> G.add_edge(2, 1) + >>> G[2][1] + {'weight': 1} + >>> G.add_edge(2, 2) + >>> G[2][1] is G[2][2] + True + + + Please see :mod:`~networkx.classes.ordered` for more examples of + creating graph subclasses by overwriting the base class `dict` with + a dictionary-like object. + """ + + def __init__(self, incoming_graph_data=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a NumPy matrix + or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G = nx.Graph(name='my graph') + >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.Graph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.Graph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + self.graph_attr_dict_factory = self.graph_attr_dict_factory + self.node_dict_factory = self.node_dict_factory + self.node_attr_dict_factory = self.node_attr_dict_factory + self.adjlist_outer_dict_factory = self.adjlist_outer_dict_factory + self.adjlist_inner_dict_factory = self.adjlist_inner_dict_factory + self.edge_attr_dict_factory = self.edge_attr_dict_factory + + self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes + self._node = self.node_dict_factory() # dictionary for node attr + # We store two adjacency lists: + # the predecessors of node n are stored in the dict self._pred + # the successors of node n are stored in the dict self._succ=self._adj + self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict + self._pred = self.adjlist_outer_dict_factory() # predecessor + self._succ = self._adj # successor + + # attempt to load graph with data + if incoming_graph_data is not None: + convert.to_networkx_graph(incoming_graph_data, create_using=self) + # load graph attributes (must be after convert) + self.graph.update(attr) + + @property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return AdjacencyView(self._succ) + + @property + def succ(self): + """Graph adjacency object holding the successors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.succ behaves like a dict. Useful idioms include + `for nbr, datadict in G.succ[n].items():`. A data-view not provided + by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):` + and a default can be set via a `default` argument to the `data` method. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` is identical to `G.succ`. + """ + return AdjacencyView(self._succ) + + @property + def pred(self): + """Graph adjacency object holding the predecessors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets + the color of the edge `(3, 2)` to `"blue"`. + + Iterating over G.pred behaves like a dict. Useful idioms include + `for nbr, datadict in G.pred[n].items():`. A data-view not provided + by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):` + A default can be set via a `default` argument to the `data` method. + """ + return AdjacencyView(self._pred) + + def add_node(self, node_for_adding, **attr): + """Add a single node `node_for_adding` and update node attributes. + + Parameters + ---------- + node_for_adding : node + A node can be any hashable Python object except None. + attr : keyword arguments, optional + Set or change node attributes using key=value. + + See Also + -------- + add_nodes_from + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_node(1) + >>> G.add_node('Hello') + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_node(K3) + >>> G.number_of_nodes() + 3 + + Use keywords set/change node attributes: + + >>> G.add_node(1, size=10) + >>> G.add_node(3, weight=0.4, UTM=('13S', 382871, 3972649)) + + Notes + ----- + A hashable object is one that can be used as a key in a Python + dictionary. This includes strings, numbers, tuples of strings + and numbers, etc. + + On many platforms hashable items also include mutables such as + NetworkX Graphs, though one should be careful that the hash + doesn't change on mutables. + """ + if node_for_adding not in self._succ: + self._succ[node_for_adding] = self.adjlist_inner_dict_factory() + self._pred[node_for_adding] = self.adjlist_inner_dict_factory() + attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() + attr_dict.update(attr) + else: # update attr even if node already exists + self._node[node_for_adding].update(attr) + + def add_nodes_from(self, nodes_for_adding, **attr): + """Add multiple nodes. + + Parameters + ---------- + nodes_for_adding : iterable container + A container of nodes (list, dict, set, etc.). + OR + A container of (node, attribute dict) tuples. + Node attributes are updated using the attribute dict. + attr : keyword arguments, optional (default= no attributes) + Update attributes for all nodes in nodes. + Node attributes specified in nodes as a tuple take + precedence over attributes specified via keyword arguments. + + See Also + -------- + add_node + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_nodes_from('Hello') + >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) + >>> G.add_nodes_from(K3) + >>> sorted(G.nodes(), key=str) + [0, 1, 2, 'H', 'e', 'l', 'o'] + + Use keywords to update specific node attributes for every node. + + >>> G.add_nodes_from([1, 2], size=10) + >>> G.add_nodes_from([3, 4], weight=0.4) + + Use (node, attrdict) tuples to update attributes for specific nodes. + + >>> G.add_nodes_from([(1, dict(size=11)), (2, {'color':'blue'})]) + >>> G.nodes[1]['size'] + 11 + >>> H = nx.Graph() + >>> H.add_nodes_from(G.nodes(data=True)) + >>> H.nodes[1]['size'] + 11 + + """ + for n in nodes_for_adding: + # keep all this inside try/except because + # CPython throws TypeError on n not in self._succ, + # while pre-2.7.5 ironpython throws on self._succ[n] + try: + if n not in self._succ: + self._succ[n] = self.adjlist_inner_dict_factory() + self._pred[n] = self.adjlist_inner_dict_factory() + attr_dict = self._node[n] = self.node_attr_dict_factory() + attr_dict.update(attr) + else: + self._node[n].update(attr) + except TypeError: + nn, ndict = n + if nn not in self._succ: + self._succ[nn] = self.adjlist_inner_dict_factory() + self._pred[nn] = self.adjlist_inner_dict_factory() + newdict = attr.copy() + newdict.update(ndict) + attr_dict = self._node[nn] = self.node_attr_dict_factory() + attr_dict.update(newdict) + else: + olddict = self._node[nn] + olddict.update(attr) + olddict.update(ndict) + + def remove_node(self, n): + """Remove node n. + + Removes the node n and all adjacent edges. + Attempting to remove a non-existent node will raise an exception. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------- + NetworkXError + If n is not in the graph. + + See Also + -------- + remove_nodes_from + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> list(G.edges) + [(0, 1), (1, 2)] + >>> G.remove_node(1) + >>> list(G.edges) + [] + + """ + try: + nbrs = self._succ[n] + del self._node[n] + except KeyError: # NetworkXError if n not in self + raise NetworkXError("The node %s is not in the digraph." % (n,)) + for u in nbrs: + del self._pred[u][n] # remove all edges n-u in digraph + del self._succ[n] # remove node from succ + for u in self._pred[n]: + del self._succ[u][n] # remove all edges n-u in digraph + del self._pred[n] # remove node from pred + + def remove_nodes_from(self, nodes): + """Remove multiple nodes. + + Parameters + ---------- + nodes : iterable container + A container of nodes (list, dict, set, etc.). If a node + in the container is not in the graph it is silently ignored. + + See Also + -------- + remove_node + + Examples + -------- + >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = list(G.nodes) + >>> e + [0, 1, 2] + >>> G.remove_nodes_from(e) + >>> list(G.nodes) + [] + + """ + for n in nodes: + try: + succs = self._succ[n] + del self._node[n] + for u in succs: + del self._pred[u][n] # remove all edges n-u in digraph + del self._succ[n] # now remove node + for u in self._pred[n]: + del self._succ[u][n] # remove all edges n-u in digraph + del self._pred[n] # now remove node + except KeyError: + pass # silent failure on remove + + def add_edge(self, u_of_edge, v_of_edge, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u, v : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + Adding an edge that already exists updates the edge data. + + Many NetworkX algorithms designed for weighted graphs use + an edge attribute (by default `weight`) to hold a numerical value. + + Examples + -------- + The following all add the edge e=(1, 2) to graph G: + + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> e = (1, 2) + >>> G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + >>> G.add_edges_from( [(1, 2)] ) # add edges from iterable container + + Associate data to edges using keywords: + + >>> G.add_edge(1, 2, weight=3) + >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> G.add_edge(1, 2) + >>> G[1][2].update({0: 5}) + >>> G.edges[1, 2].update({0: 5}) + """ + u, v = u_of_edge, v_of_edge + # add nodes + if u not in self._succ: + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + # add the edge + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + self._succ[u][v] = datadict + self._pred[v][u] = datadict + + def add_edges_from(self, ebunch_to_add, **attr): + """Add all the edges in ebunch_to_add. + + Parameters + ---------- + ebunch_to_add : container of edges + Each edge given in the container will be added to the + graph. The edges must be given as 2-tuples (u, v) or + 3-tuples (u, v, d) where d is a dictionary containing edge data. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + See Also + -------- + add_edge : add a single edge + add_weighted_edges_from : convenient way to add weighted edges + + Notes + ----- + Adding the same edge twice has no effect but any edge data + will be updated when each duplicate edge is added. + + Edge attributes specified in an ebunch take precedence over + attributes specified via keyword arguments. + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples + >>> e = zip(range(0, 3), range(1, 4)) + >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 + + Associate data to edges + + >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) + >>> G.add_edges_from([(3, 4), (1, 4)], label='WN2898') + """ + for e in ebunch_to_add: + ne = len(e) + if ne == 3: + u, v, dd = e + elif ne == 2: + u, v = e + dd = {} + else: + raise NetworkXError( + "Edge tuple %s must be a 2-tuple or 3-tuple." % (e,)) + if u not in self._succ: + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) + datadict.update(attr) + datadict.update(dd) + self._succ[u][v] = datadict + self._pred[v][u] = datadict + + def remove_edge(self, u, v): + """Remove the edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove the edge between nodes u and v. + + Raises + ------ + NetworkXError + If there is not an edge between u and v. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, etc + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + >>> e = (2, 3, {'weight':7}) # an edge with attribute data + >>> G.remove_edge(*e[:2]) # select first part of edge tuple + """ + try: + del self._succ[u][v] + del self._pred[v][u] + except KeyError: + raise NetworkXError("The edge %s-%s not in graph." % (u, v)) + + def remove_edges_from(self, ebunch): + """Remove all edges specified in ebunch. + + Parameters + ---------- + ebunch: list or container of edge tuples + Each edge given in the list or container will be removed + from the graph. The edges can be: + + - 2-tuples (u, v) edge between u and v. + - 3-tuples (u, v, k) where k is ignored. + + See Also + -------- + remove_edge : remove a single edge + + Notes + ----- + Will fail silently if an edge in ebunch is not in the graph. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> ebunch = [(1, 2), (2, 3)] + >>> G.remove_edges_from(ebunch) + """ + for e in ebunch: + u, v = e[:2] # ignore edge data + if u in self._succ and v in self._succ[u]: + del self._succ[u][v] + del self._pred[v][u] + + def has_successor(self, u, v): + """Returns True if node u has successor v. + + This is true if graph has the edge u->v. + """ + return (u in self._succ and v in self._succ[u]) + + def has_predecessor(self, u, v): + """Returns True if node u has predecessor v. + + This is true if graph has the edge u<-v. + """ + return (u in self._pred and v in self._pred[u]) + + def successors(self, n): + """Returns an iterator over successor nodes of n. + + A successor of n is a node m such that there exists a directed + edge from n to m. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------- + NetworkXError + If n is not in the graph. + + See Also + -------- + predecessors + + Notes + ----- + neighbors() and successors() are the same. + """ + try: + return iter(self._succ[n]) + except KeyError: + raise NetworkXError("The node %s is not in the digraph." % (n,)) + + # digraph definitions + neighbors = successors + + def predecessors(self, n): + """Returns an iterator over predecessor nodes of n. + + A predecessor of n is a node m such that there exists a directed + edge from m to n. + + Parameters + ---------- + n : node + A node in the graph + + Raises + ------- + NetworkXError + If n is not in the graph. + + See Also + -------- + successors + """ + try: + return iter(self._pred[n]) + except KeyError: + raise NetworkXError("The node %s is not in the digraph." % (n,)) + + @property + def edges(self): + """An OutEdgeView of the DiGraph as G.edges or G.edges(). + + edges(self, nbunch=None, data=False, default=None) + + The OutEdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, `G.edges[u, v]['color']` provides the value of the color + attribute for edge `(u, v)` while + `for (u, v, c) in G.edges.data('color', default='red'):` + iterates through all the edges yielding the color attribute + with default `'red'` if no color attribute exists. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : OutEdgeView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, d) tuples of edges, but can also be used for + attribute lookup as `edges[u, v]['foo']`. + + See Also + -------- + in_edges, out_edges + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.DiGraph() # or MultiDiGraph, etc + >>> nx.add_path(G, [0, 1, 2]) + >>> G.add_edge(2, 3, weight=5) + >>> [e for e in G.edges] + [(0, 1), (1, 2), (2, 3)] + >>> G.edges.data() # default data is {} (empty dict) + OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) + >>> G.edges.data('weight', default=1) + OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) + >>> G.edges([0, 2]) # only edges incident to these nodes + OutEdgeDataView([(0, 1), (2, 3)]) + >>> G.edges(0) # only edges incident to a single node (use G.adj[0]?) + OutEdgeDataView([(0, 1)]) + + """ + return OutEdgeView(self) + + # alias out_edges to edges + out_edges = edges + + @property + def in_edges(self): + """An InEdgeView of the Graph as G.in_edges or G.in_edges(). + + in_edges(self, nbunch=None, data=False, default=None): + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + in_edges : InEdgeView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, d) tuples of edges, but can also be used for + attribute lookup as `edges[u, v]['foo']`. + + See Also + -------- + edges + """ + return InEdgeView(self) + + @property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, degree). + + See Also + -------- + in_degree, out_degree + + Examples + -------- + >>> G = nx.DiGraph() # or MultiDiGraph + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1, 2])) + [(0, 1), (1, 2), (2, 2)] + + """ + return DiDegreeView(self) + + @property + def in_degree(self): + """An InDegreeView for (node, in_degree) or in_degree for single node. + + The node in_degree is the number of edges pointing to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iteration over (node, in_degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + In-degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, in-degree). + + See Also + -------- + degree, out_degree + + Examples + -------- + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.in_degree(0) # node 0 with degree 0 + 0 + >>> list(G.in_degree([0, 1, 2])) + [(0, 0), (1, 1), (2, 1)] + + """ + return InDegreeView(self) + + @property + def out_degree(self): + """An OutDegreeView for (node, out_degree) + + The node out_degree is the number of edges pointing out of the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator over (node, out_degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + Out-degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, out-degree). + + See Also + -------- + degree, in_degree + + Examples + -------- + >>> G = nx.DiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.out_degree(0) # node 0 with degree 1 + 1 + >>> list(G.out_degree([0, 1, 2])) + [(0, 1), (1, 1), (2, 1)] + + """ + return OutDegreeView(self) + + def clear(self): + """Remove all nodes and edges from the graph. + + This also removes the name, and all graph, node, and edge attributes. + + Examples + -------- + >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G.clear() + >>> list(G.nodes) + [] + >>> list(G.edges) + [] + """ + self._succ.clear() + self._pred.clear() + self._node.clear() + self.graph.clear() + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return False + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return True + + def to_undirected(self, reciprocal=False, as_view=False): + """Returns an undirected representation of the digraph. + + Parameters + ---------- + reciprocal : bool (optional) + If True only keep edges that appear in both directions + in the original digraph. + as_view : bool (optional, default=False) + If True return an undirected view of the original directed graph. + + Returns + ------- + G : Graph + An undirected graph with the same name and nodes and + with edge (u, v, data) if either (u, v, data) or (v, u, data) + is in the digraph. If both edges exist in digraph and + their edge data is different, only one edge is created + with an arbitrary choice of which edge data to use. + You must check and correct for this manually if desired. + + See Also + -------- + Graph, copy, add_edge, add_edges_from + + Notes + ----- + If edges in both directions (u, v) and (v, u) exist in the + graph, attributes for the new undirected edge will be a combination of + the attributes of the directed edges. The edge data is updated + in the (arbitrary) order that the edges are encountered. For + more customized control of the edge attributes use add_edge(). + + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar G=DiGraph(D) which returns a + shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/2/library/copy.html. + + Warning: If you have subclassed DiGraph to use dict-like objects + in the data structure, those changes do not transfer to the + Graph created by this method. + + Examples + -------- + >>> G = nx.path_graph(2) # or MultiGraph, etc + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, Graph) + # deepcopy when not a view + G = Graph() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + if reciprocal is True: + G.add_edges_from((u, v, deepcopy(d)) + for u, nbrs in self._adj.items() + for v, d in nbrs.items() + if v in self._pred[u]) + else: + G.add_edges_from((u, v, deepcopy(d)) + for u, nbrs in self._adj.items() + for v, d in nbrs.items()) + return G + + def reverse(self, copy=True): + """Returns the reverse of the graph. + + The reverse is a graph with the same nodes and edges + but with the directions of the edges reversed. + + Parameters + ---------- + copy : bool optional (default=True) + If True, return a new DiGraph holding the reversed edges. + If False, the reverse graph is created using a view of + the original graph. + """ + if copy: + H = self.__class__() + H.graph.update(deepcopy(self.graph)) + H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items()) + H.add_edges_from((v, u, deepcopy(d)) for u, v, d + in self.edges(data=True)) + return H + return nx.graphviews.reverse_view(self)